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Abstract

Some convenient limit properties of usual information criteria are given for coin-
tegrating rank selection. Allowing for a nonparametric short memory component
and using a reduced rank regression with only a single lag, standard informa-
tion criteria are shown to be weakly consistent in the choice of cointegrating rank
provided the penalty coefficient Cn ! 1 and Cn=n ! 0 as n ! 1: The limit dis-
tribution of the AIC criterion, which is inconsistent, is also obtained. The analysis
provides a general limit theory for semiparametric reduced rank regression under
weakly dependent errors. The method does not require the specification of a full
model, is convenient for practical implementation in empirical work, and is sympa-
thetic with semiparametric estimation approaches to cointegration analysis. Some
simulations results on finite sample performance of the criterion are reported.

Keywords: Cointegrating rank, Consistency, Information criteria, Model selection,
Nonparametric, Short memory, Unit roots.

JEL classification: C22, C32

1 Introduction

Information criteria are now widely used in parametric settings for econometric
model choice. The methods have been especially well studied in stationary systems.
Models that allow for nonstationarity are particularly relevant in econometric work

∗Our thanks go to a referee for helpful comments on the original version. Phillips acknowledges
partial support from the NSF under Grant No. SES 06-47086.

1



and have been considered by several authors, including Tsay (1984), Pötscher (1989),
Wei (1992), Phillips and Ploberger (1996), Phillips(1996), and Nielsen (2006), among
others.

Model choice methods are heavily used in empirical work and in forecasting exer-
cises, the most common applications involving choice of lag length in (vector) autore-
gression and variable choice in regression. The methods have also been suggested and
used in the context of cointegrating rank choice where they are known to be consistent
under certain conditions, at least in parametric models (Chao and Phillips, 1999). This
application is natural because cointegrating rank is an order parameter for which model
selection methods are particularly well suited since there are only a finite number of
possible choices. Furthermore, rank order may be combined with lag length and inter-
cept and trend degree parameters to provide a wide compass of choice in parametric
models that is convenient in practical work, as discussed in Phillips (1996).

When the focus is on cointegration and cointegrating rank selection, it is not neces-
sary to build a complete model for statistical purposes. Indeed, many of the approaches
that have been developed for econometric estimation and inference in such contexts are
semiparametric in character so that the model user can be agnostic regarding the short
memory features of the data and concentrate on long run behavior. In such settings, it
will often be desirable to perform the evaluation of cointegrating rank (or choice of the
number of unit roots in a system) in a semiparametric context allowing for a general
short memory component in the time series.

The present paper has this goal and looks specifically at the issue of cointegrating
rank choice by information criteria. In the case of a univariate series, this choice reduces
to distinguishing unit root time series from stationary series. In such a context, it is
known that information criteria provide consistent model choice in a semiparametric
framework (Phillips, 2008). The contribution of this paper is to extend that work to
the multivariate setting in the context of a semiparametric reduced rank regression of
the form

¢Xt = ®¯0Xt−1 + ut; t 2 f1; :::; ng ; (1)

where Xt is an m- vector time series, ® and ¯ are m £ r0 full rank matrices and ut
is a weakly dependent stationary time series with zero mean and continuous spectral
density matrix fu (¸) : The series Xt is initialized at t = 0 by some (possibly random)
quantity X0 = Op (1) ; although other initialization assumptions may be considered, as
in Phillips (2008).

A secondary contribution of the paper that emerges from the analysis is to provide a
limit theory for semiparametric reduced rank regressions of the form (1) under weakly
dependent errors. This limit theory is useful in studying cases where reduced rank
regressions are misspecified, possibly through the choice of inappropriate lag lengths in
the vector autoregression or incorrect settings of the cointegrating rank.

Under (1), the time series Xt is cointegrated with cointegration matrix ¯ of rank
r0; so there are r0 cointegrating relations in the true model. Of course, r0 is generally
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unknown and our goal is to treat (1) semiparametrically with regard to ut and to
estimate r0 directly in (1) by information criteria. The procedure we consider is quite
simple. Model (1) is estimated by conventional reduced rank regression (RRR) for
all values of r = 0; 1; :::;m just as if ut were a martingale difference, and r is chosen
to optimize the corresponding information criteria as if (1) were a correctly specified
parametric framework up to the order parameter r. Thus, no explicit account is taken
of the weak dependence structure of ut in the process.

The criterion used to evaluate cointegrating rank takes the simple form

IC (r) = log
¯̄̄b§(r)

¯̄̄
+ Cnn

−1 ¡2mr ¡ r2
¢
; (2)

with coefficient Cn = logn; log logn; or 2 corresponding to the BIC (Schwarz, 1978;
Akaike, 1977; Rissanen, 1978), Hannan and Quinn (1979), and Akaike (1974) penalties,
respectively. Sample information-based versions of the coefficient Cn may also be em-
ployed, such as those in Wei’s (1992) FIC criterion and Phillips and Ploberger’s (1996)
PIC criterion. The BIC version of (2) was given in Phillips and McFarland (1997)
and used to determine cointegrating rank in an exchange rate application. In (2) the
degrees of freedom term 2mr¡ r2 is calculated to account for the 2mr elements of the
matrices ® and ¯ that have to be estimated, adjusted for the r2 restrictions that are
needed to ensure structural identification of ¯ in reduced rank regression1.

1For example, in triangular system specifications (Phillips, 1991) β0 takes the form [Ir,−B] for
some unrestricted r× (m− r) matrix B, which involves r2 restrictions and leads to degrees of freedom
2mr− r2 in A. Under normalization restrictions of the form (6) on β that are conventionally employed
in empirical reduced rank regression modeling, the degrees of freedom term would be 2mr−r(r+1)/2,
leading to the alternate criterion

IC∗ (r) = log Σ (r) +Cnn
−1 (2mr − r(r + 1)/2) .

In this case the outer product form of the coefficient matrix in (1) implies that A = αβ0 = αCC0β0

for an arbitrary orthogonal matrix C, so that α and β are not uniquely identifed even though the
likelihood is well defined. In such cases, only the cointegrating rank and the cointegrating space are
identified and consistently estimable. Correspondingly, there are more degrees of freedom in the system.
However, the usual justification for BIC (Schwarz, 1978; Ploberger and Phillips, 1996) involves finding
an asymptotic approximation to the Bayesian data density (and hence the posterior probability of the
model), which is obtained by Laplace approximation methods using a Taylor series expansion of the log
likelihood around a consistent parameter estimate. In the reduced rank regression case, r2 restrictions
on β are required to identify the structural parameters as in the above formulation β0 = [Ir,−B]. If
only normalization restrictions such as β0β = Ir are imposed, then we can write

A = αβ0 = αCC0 Ir +BB0 −1/2 [Ir,−B] ,

with β0 = (Ir +BB0)
−1/2

[Ir,−B] and where C is an arbitrary orthogonal matrix. In this case, C is
unidentified and if C has a uniform prior distribution on the orthogonal group O (r) independent of
the prior on (α,B) , then C may be integrated out of the Bayesian data density or marginal likelihood.
The data density then has the same form as it does for the case where

A = α Ir +BB0 −1/2 [Ir,−B] = ᾱ−1/2 [Ir,−B] ,

and where ᾱ and B are identified. In this event, the model selection criterion is the same as (2).
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For each r = 0; 1; ::;m; we estimate the m £ r matrices ® and ¯ by reduced rank
regression and, for use in (2), we form the corresponding residual variance matrices

b§(r) = n−1
nX
t=1

³
¢Xt ¡ ®̂^̄

0
Xt−1

´³
¢Xt ¡ ®̂^̄

0
Xt−1

´0
; r = 1; :::;m

with b§(0) = n−1
Pn

t=1¢Xt¢X 0
t: Model evaluation based on IC (r) then leads to the

cointegrating rank selection criterion

br = argmin
0≤r≤m

IC (r) :

As shown below, the information criterion IC (r) is weakly consistent for selecting
the cointegrating rank r0 provided that the penalty term in (2) satisfies the weak re-
quirements that Cn ! 1 and Cn=n ! 0 as n ! 1: No minimum expansion rate for
Cn such as log logn is required and no more complex parametric model needs to be es-
timated. The approach is therefore quite straightforward for practical implementation.

The organization of the paper is as follows. Some preliminaries on estimation and
notation are covered in Section 2. The main asymptotic results are given in Section 3.
Section 4 briefly reports some simulation findings. Section 5 concludes and discusses
some extensions. Proofs and technical material are in the Appendix.

2 Preliminaries

Reduced rank regression (RRR) estimates of ® and ¯ in (1) are obtained ignoring
any weak dependence error structure in ut. To analyze the asymptotic properties of
the rank order estimates and the information criterion IC(r) under a general error
structure, we start by investigating the asymptotic properties of the various regression
components. Using conventional RRR notation, define

S00 = n−1
nX
t=1

¢Xt¢X 0
t; S11 = n−1

nX
t=1

Xt−1X
0
t−1;

S01 = n−1
nX
t=1

¢XtX
0
t−1; and S10 = n−1

nX
t=1

Xt−1¢X 0
t: (3)

For some given r and ¯; the estimate of ® is obtained by regression as

b® (¯) = S01¯
¡
¯0S11¯

¢−1
: (4)

Again, given r; the corresponding RRR estimate of ¯ in (1) is anm£r matrix satisfying

b̄ = argmin
β

¯̄̄
S00 ¡ S01¯

¡
¯0S11¯

¢−1
¯0S10

¯̄̄
; (5)
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subject to the normalization

b̄0S11b̄ = Ir: (6)

The estimate b̄ is found in the usual way by first solving the determinantal equation¯̄
¸S11 ¡ S10S

−1
00 S01

¯̄
= 0 (7)

for the ordered eigenvalues 1 > b̧
1 > ¢ ¢ ¢ > b̧

m > 0 and corresponding eigenvectorsbV = [bv1; ¢ ¢ ¢ ; bvm]; which are normalized by bV 0S11bV = Im: Estimates of ¯ and ® are
then obtained as b̄ = [bv1; ¢ ¢ ¢ ; bvr]; and b® = b®(b̄) = S01b̄; (8)

with b̄ formed from the eigenvectors of bV corresponding to the r largest roots of (7).
The residuals from the RRR and the corresponding moment matrix of residuals that
appear in the information criterion are

but = ¢Xt ¡ b®b̄0Xt−1; and (9)

b§(r) = n−1
nX
t=1

butbu0t = S00 ¡ S01b̄b̄0S10: (10)

Using (10) we have (e.g., theorem 6.1 of Johansen, 1995)¯̄̄b§(r)
¯̄̄
= jS00j¦r

i=1

³
1¡ b̧

i

´
; (11)

where b̧
i; 1 · i · r; are the r largest solutions to (7): The criterion (2) is then well

determined for any given value of r:

3 Asymptotic Results

The following assumptions make specific the semiparametric and cointegration com-
ponents of (1). Assumption LP is a standard linear process condition of the type that
is convenient in developing partial sum limit theory. The condition can be relaxed to
allow for martingale difference innovations and to allow for some mild heterogeneity
in the innovations without disturbing the limit theory in a material way (see Phillips
and Solo, 1992). Assumption RR gives conditions that are standard in the study of
reduced rank regressions with some unit roots (Johansen, 1988, 1995; Phillips, 1995).

Assumption LP Let d (L) =
P∞

j=0DjL
j ; with D0 = I and full rank D (1), and

let ut have Wold representation

ut = D (L) "t =
∞X
j=0

Dj"t−j ; with
∞X
j=0

j1/2 jjDj jj < 1; (12)
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for some matrix norm jj¢jj and where "t is iid (0;§ε) with §ε > 0. We use the notation
¡ab (h) = E

¡
atb

0
t+h

¢
and ¤ab =

P∞
h=1 ¡ab (h) for autocovariance matrices and one

sided long run autocovariances and set − =
P∞

h=−∞ ¡uu (h) = D (1)§εD (1)0 > 0 and
§ε = E f"t"0tg :

Assumption RR (a) The determinantal equation
¯̄
I ¡ ®¯0L

¯̄
= 0 has roots on or

outside the unit circle, i.e. jLj ¸ 1:
(b) Set ¦ = Im + ®¯0 where ® and ¯ are m£ r0 matrices of full column rank r0,

0 · r0 · m: (If r0 = 0 then ¦ = Im; if r0 = m then ¯ has full rank m and ¯0Xt and
hence Xt are (asymptotically) stationary )

(c) The matrix R = Ir + ¯0® has eigenvalues within the unit circle.

Assumption (c) ensures that the matrix ¯0® has full rank. Let ®⊥ and ¯⊥ be
orthogonal complements to ® and ¯; so that [®; ®⊥] and [¯; ¯⊥] are nonsingular and
¯0⊥¯⊥ = Im−r: Then, nonsingularity of ¯0® implies the nonsingularity of ®0⊥¯⊥. Under
RR we have the Wold representation of ¯0Xt

vt := ¯0Xt =
∞X
i=0

Ri¯0ut−i = R (L) ¯0ut = R (L)¯0D (L) "t; (13)

and some further manipulations yield the following useful partial sum representation

Xt = C
tX

s=1

us + ®
¡
¯0®

¢−1
R (L)¯0ut + CX0; (14)

where C = ¯⊥ (®0⊥¯⊥)
−1 ®0⊥: Expression (14) reduces to the Granger representation

when ut is a martingale difference (e.g. Johansen, 1995).
Under LP a functional law for partial sums of ut holds, so that n−1/2

P[n·]
s=1 us )

Bu (¢) as n ! 1; where Bu is vector Brownian motion with variance matrix −: In view
of (13) and the fact that R (1) =

P∞
i=0R

i = (I ¡R)−1 = ¡
¡
¯0®

¢−1, we further have
n−1/2

[n·]X
s=1

vs = n−1/2
[n·]X
s=1

¯0Xs ) ¡
¡
¯0®

¢−1
¯0Bu (¢) ; as n ! 1: (15)

These limit laws involve the same Brownian motion Bu and determine the asymptotic
forms of the various sample moment matrices involved in the reduced rank regression
estimation of (1).

Define

Var

·
¢Xt

¯0Xt−1

¸
=

·
§00 §0β
§β0 §ββ

¸
: (16)

Explicit expressions for the submatrices in this expression may be worked out in terms of
the autocovariance sequences of ut and vt and the parameters of (1). These expressions
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are given in (24) - (26) in the proof of Lemma 3 in the Appendix. The following result
provides some asymptotic limits that are useful in deriving the asymptotic properties
of b§(r) in the criterion function (2).

Lemma 1 Under Assumptions LP and RR,

S00 ! p §00; ¯0S11¯ !p §ββ; ¯0S10 !p §β0;

n−1¯0⊥S11¯⊥ )
¡
®0⊥¯⊥

¢−1
®0⊥

µZ 1

0
BuB

0
u

¶
®⊥

¡
¯0⊥®⊥

¢−1
;

¯0⊥(S10 ¡ S11¯®
0) )

¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u +ª1wu;

¯0⊥S11¯ ) ¡
¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u¯(®

0¯)−1 +ªwv;

¯0⊥S10 )
¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u®⊥

¡
¯0⊥®⊥

¢−1
¯0⊥ +ª1wu +ªwv®

0;

where

ª1wu =
∞X
h=1

E
©¡

¯0⊥¢Xt

¢
u0t+h

ª
; ªwv =

∞X
h=0

E
n¡

¯0⊥¢Xt

¢ ¡
¯0Xt+h

¢0o
;

and wt = ¯0⊥¢Xt = ¯0⊥ut + ¯0⊥®vt−1:

Remarks:

(a) When ut is weakly dependent, it is apparent that the asymptotic limits of ¯0⊥(S10¡
S11¯®

0); ¯0⊥S10; and ¯0⊥S11¯ involve bias terms that depend on various one sided
long run covariance matrices associated with the stationary components ut; vt,
and wt = ¯0⊥¢Xt: Explicit values of these one sided long run covariance matrices
are given in (29) and (30) in the Appendix.

(b) When ut is a martingale difference sequence, ª1wu = 0 and ªwv = ¯0⊥E (utv
0
t) :

Simpler results, such as

¯0⊥(S10 ¡ S11¯®
0) )

¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u; (17)

then hold for the limits in lemma 1, and these correspond to earlier results given
for example in theorem 10.3 of Johansen (1995).

From (1) ; ¢Xt = ut + ®¯0Xt−1 = ut + ®vt−1; so that (c.f. (25) - (26)) §0β =
®§ββ +Eutv

0
t−1 and

§00 = ®§β0 +Eutv
0
t−1®

0 +E
¡
utu

0
t

¢
: (18)
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Define

e® = §0β§
−1
ββ = ®+Eutv

0
t−1§

−1
ββ ; (19)

and let e®⊥ be an m£ (m¡ r) orthogonal complement to e® such that [e®; e®⊥] is nonsin-
gular.

Lemma 2 Under Assumptions LP and RR, when the true cointegration rank is r0;
the r0 largest solutions to (7) ; denoted by b̧

i with 1 · i · r0; converge to the roots of¯̄
¸§ββ ¡ §β0§

−1
00 §0β

¯̄
= 0: (20)

The remaining m¡ r0 roots, denoted by b̧
i with r0+1 · i · m; decrease to zero at the

rate n−1 and fnb̧i : i = r0 + 1; :::;mg converge weakly to the roots of¯̄̄̄
½

Z 1

0
GuG

0
u ¡

µZ 1

0
GudG

0
u¯

0
⊥ +ª

¶ e®⊥ ¡e®0⊥§00e®⊥¢−1 e®0⊥µ
¯⊥

Z 1

0
dGuG

0
u +ª0

¶¯̄̄̄
= 0;

(21)

where Gu (r) = (®0⊥¯⊥)
−1 ®0⊥Bu (r) is m¡ r0 dimensional Brownian motion with vari-

ance matrix (®0⊥¯⊥)
−1 ®0⊥−®⊥(¯

0
⊥®⊥)

−1 and ª = ª1wu +ªwv®
0:

Remarks:

(c) Comparing these results with those of the standard RRR case with martingale
difference errors (Johansen, 1995, p. 158), we see that, just as in the standard
case, the r0 largest roots of (7) are all positive in the limit and the m¡ r0 small-
est roots converge to 0 at the rate n−1; both results now holding under weakly
dependent errors: However, when ut is weakly dependent, the limit distribution
determined by (21) is more complex than in the standard case. In particular, the
determinantal equation (21) involves the composite one sided long run covariance
matrix ª:

(d) When ut is a martingale difference sequence, we find that e® = ®; e®⊥ = ®⊥;
ª1wu = 0; ª = ªwv®

0; §00 = ®§ββ®
0 +− and

e®⊥ ¡e®0⊥§00e®⊥¢−1 e®0⊥ = ®⊥
¡
®0⊥−®⊥

¢−1
®0⊥:

Then ®0⊥¯⊥Gu (r) = ®0⊥Bu (r) is Brownian motion with covariance matrix ®0⊥−®⊥;
ª®⊥ = 0; and the determinantal equation (21) reduces to¯̄̄̄

½

Z 1

0
GuG

0
u ¡

Z 1

0
GudG

0
u¯

0
⊥®⊥

¡
®0⊥−®⊥

¢−1
®0⊥¯⊥

Z 1

0
dGuG

0
u

¯̄̄̄
= 0;
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which is equivalent to¯̄̄̄
½

Z 1

0
VuV

0
u ¡

Z 1

0
VudV

0
u

Z 1

0
dVuV

0
u

¯̄̄̄
= 0;

where Vu (r) is m ¡ r0 dimensional standard Brownian motion, thereby corre-
sponding to the standard limit theory of a parametric reduced rank regression
(Johansen, 1995).

Theorem 1 (a) Under Assumptions LP and RR, the criterion IC(r) is weakly con-
sistent for selecting the rank of cointegration provided Cn ! 1 at a slower rate than
n:

(b) The asymptotic distribution of the AIC criterion (IC(r) with coefficient Cn = 2)
is given by

lim
n→∞

P (r̂AIC = r0)

= P

"
m
\

r=r0+1

(
rX

i=r0+1

»i < 2 (r ¡ r0) (2m¡ r ¡ r0)

)#
;

lim
n→∞

P (r̂AIC = rjr > r0)

= P

(Ã
m
\

r0=r+1

(
r0X

i=r+1

»i < 2
¡
r0 ¡ r

¢
(2m¡ r0 ¡ r)

)!
\Ã

r−1
\

r0=r0

(
rX

i=r0+1

»i > 2
¡
r ¡ r0

¢ ¡
2m¡ r ¡ r0

¢)!)
;

and

lim
n→∞

P (r̂AIC = rjr < r0) = 0;

where »r0+1; :::; »m are the ordered roots of the limiting determinantal equation (21) :

Remarks:

(e) BIC, HQ and other information criteria with Cn ! 1 and Cn=n ! 0 are all
consistent for the selection of cointegrating rank without having to specify a full
parametric model. The same is true for the criterion IC∗(r) where only the
cointegrating space is estimated and structural identification conditions on the
cointegrating vector are not imposed or used in rank selection.

(f) AIC is inconsistent, asymptotically never underestimates cointegrating rank, and
favors more liberally parametrized systems. This outcome is analogous to the
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well-known overestimation tendency of AIC in lag length selection in autoregres-
sion. Of course, in the present case, maximum rank is bounded above by the
order of the system. Thus, the advantages to overestimation in lag length selec-
tion that arise when the autoregressive order is infinite might not be anticipated
here. However, when cointegrating rank is high (and close to full dimensional),
AIC typically performs exceedingly well (as simulations reported below attest)
largely because the upper bound in rank restricts the tendency to overestimate.

(g) Whenm = 1, r0 = 0 corresponds to the unit root case and r0 = 1 to the stationary
case. Thus, one specialization of the above result is to unit root testing. In this
case, the criteria consistently discriminate between unit root and stationary series
provided Cn ! 1 and Cn=n ! 0; as shown in Phillips (2008). In this case, the
limit distribution of AIC is much simpler and involves only the explicit limiting

root »1 =
³R 1
0 BudBu + ¸

´2
=
n³R 1

0 B2u

´
§00

o
where ¸ =

P∞
h=1E (utut+h) :

(h) While Theorem 1 relates directly to model (1), it is easily shown to apply in cases
where the model has intercepts and drift. Thus, the result provides a convenient
basis for consistent cointegration rank selection in most empirical contexts.

4 Simulations

Simulations were conducted to evaluate the finite sample performance of the criteria
under various generating mechanisms for the short memory component ut; different
settings for the true cointegrating rank, and for various choices of the penalty coefficient
Cn: Some illustrative findings for the case where m = 2 are briefly reported here.

The data generating process follows (1). When r0 = 0 we have ®0¯ = 0; and when
r0 = 1 the reduced rank coefficient matrix is set to

®0¯ = (1; 0:5)

µ
¡1
1

¶
:

When r0 = 2; two different simulations (design A and design B) were performed, one
with smaller and one with larger stationary roots as follows:

A: ®0¯ =

µ
¡0:5 0:1
0:2 ¡0:4

¶
; with stationary roots ¸i

£
I + ¯0®

¤
= f0:7; 0:4g ;

B: ®0¯ =

µ
¡0:5 0:1
0:2 ¡0:15

¶
; with stationary roots ¸i

£
I + ¯0®

¤
= f0:9; 0:45g :

Simulations were conducted with AR(1), MA(1), and ARMA(1,1) errors, corresponding
to the models

ut = Aut−1 + "t; ut = "t +B"t−1; and ut = Aut−1 + "t +B"t−1; (22)
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Figure 1: Cointegrating rank selection in design A when ut is AR(1) and n = 100:

respectively, with coefficient matrices A = ÃIm; B = ÁIm; where jÃj < 1; jÁj < 1; and
with innovations "t = iidN (0;§ε) ; where

§ε =

µ
1 + µ 0
0 1¡ µ

¶
> 0:

The parameters for these models were set to Ã = Á = 0:4 and µ = 0:25:
The performance of the criteria AIC, BIC, HQ, and log(HQ)2 was investigated for

sample sizes n = 100 in design A and n = 100; 400 in design B, in both cases including
50 additional observations to eliminate start-up effects from the initializations X0 = 0
and "0 = 0: The results are based on 20; 000 replications and are summarized in Fig.
1, which shows the results for design A, and in Table 1, which shows the results for
design B and with correct selections in bold type. The results displayed are for the
model with AR(1) errors. Similar results were obtained for the other error generating
schemes in (22).

As is evident in Fig. 1, the BIC criterion generally performs very well when n ¸ 100.
For design B, where the stationary roots of the system are closer to unity, BIC has
a tendency to underestimate rank when n = 100 and r0 = 2, thereby choosing more
parsimoniously parameterized systems in this case, just as it does in lag length selection
in autoregressions. But BIC performs well when n = 400; as seen in Table 1.

2 log(HQ) has penalty coefficient Cn = log log logn.
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The tendency of AIC to overestimate rank is also clear in Fig. 1, but this tendency
is noticeably attenuated when the true rank is 1 and is naturally delimited when the
true rank is 2 because of the upper bound in rank choice. For design B, AIC performs
better than BIC when the cointegrating rank is 2, as does HQ, for which the penalty
is Cn < 2 when n = 100; 400: Criteria with weaker penalties, such as log(HQ) with
Cn = log log logn; also do better in this case, although for other cases they perform
much less satisfactorily than AIC and HQ, showing a stronger tendency to overestimate
cointegrating rank.

Based on overall performance, it seems that BIC can be recommended for practi-
cal work in choosing cointegrating rank and it gives generally very sharp results when
n ¸ 100: The main weakness of BIC is its slight tendency to choose more parsimonious
models (i.e. models with more unit roots) especially when the system is stationary and
has a root near unity3.

r = 0 r = 1 r = 2 r = 0 r = 1 r = 2
AIC 52.7 36.3 11.0 AIC 48.3 39.7 12.0
BIC 94.8 4.8 0.4 BIC 87.8 10.8 1.4
HQ 47.0 39.6 13.3 HQ 35.1 46.6 18.3

Log(HQ) 7.4 48.8 43.7 Log(HQ) 2.6 44.3 53.1

r = 0 r = 1 r = 2 r = 0 r = 1 r = 2
AIC 0.0 76.4 23.6 AIC 0.0 77.7 22.3
BIC 0.0 96.6 3.4 BIC 0.0 94.2 5.8
HQ 0.0 73.5 26.5 HQ 0.0 70.8 29.2

Log(HQ) 0.0 45.8 54.2 Log(HQ) 0.0 40.4 59.7

r = 0 r = 1 r = 2 r = 0 r = 1 r = 2
AIC 0.0 0.0 100.0 AIC 0.0 25.2 74.8
BIC 0.0 2.1 97.9 BIC 4.5 74.2 21.3
HQ 0.0 0.0 100.0 HQ 0.0 14.2 85.8

Log(HQ) 0.0 0.0 100.0 Log(HQ) 0.0 1.6 98.4

n = 400

r0 = 2 r0 = 2

n = 100
r0 = 0 r0 = 0

r0 = 1 r0 = 1

Table 1. Cointegrating rank selection in design B when ut follows an AR(1) process.

Wang and Bessler (2005) reported some related simulation work under the assump-
tion that it is known that the time series are already transformed into a form where
the observed variables are either stationary or integrated. In the present context, this
is equivalent to setting ®¯0 to a diagonal matrix with elements of either zero or unity.
The problem of cointegrating rank selection in this simpler framework is equivalent to
direct unit root testing on each variable. We may therefore use the selection method
of Phillips (2008) to estimate the cointegration rank by conducting a unit root test on
each time series and simply counting the number of unit roots obtained. Simulations

3Simulations (not reported here) showed that the tendency for BIC to select models with more unit
roots is exacerbated when the criterion IC∗ (r) , which has a stronger penalty, is used.
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(not reported here) indicate that this procedure works well. However, since the trans-
formation which takes the model into a canonical form where the observed variables
are either stationary or integrated is seldom known, this procedure is generally not
practical for estimating cointegrating rank.

5 Conclusion

Model selection for cointegrating rank treats rank as an order parameter and pro-
vides the convenience of consistent estimation of this parameter under weak conditions
on the expansion rate of the penalty coefficient. The approach is easy to implement in
practice and is sympathetic with other semiparametric approaches to estimation and
inference in cointegrating systems where the focus is on long run behavior.

While it is not explicitly demonstrated here, the consistency result for cointegrat-
ing rank selection by information criteria continues to hold in models where there is
unconditional heterogeneity in the error variance of unknown form, including breaks in
the variance or smooth transition functions in the variance over time. Such permanent
changes in variance are known to invalidate both unit root tests and likelihood ratio
tests for cointegrating rank because of their effects on the limit distribution theory
under the null (see Cavaliere, 2004; Cavaliere and Taylor, 2007; Beare, 2007). Since
consistency of the information criteria is unaffected by the presence of this form of vari-
ance induced nonstationarity, the approach offers an additional degree of robustness in
cointegrating rank determination that is useful in empirical applications.

Some applications of the methods outlined here are possible in other models. First,
rather than work with reduced rank regression formulations within a vector autore-
gressive framework, it is possible to use reduced rank formulations in regressions of the
time series on a fixed (or expanding) number of deterministic basis functions such as
time polynomials or sinusoidal polynomials (Phillips, 2005). In a similar way to the
present analysis, it can be shown that information criteria such as BIC and HQ will be
consistent for cointegrating rank in such coordinate systems. The coefficient matrix in
such systems turns out to have a random limit, corresponding to the matrix of random
variables that appear in the Karhunen-Loève representation (Phillips, 1998), but has
a rank that is the same as the dimension of the cointegrating space, which enables
consistent rank estimation by information criteria. A second application is to dynamic
factor panel models with a fixed number of stochastically trending unobserved factors,
as in Bai and Ng (2004). Again, these models have reduced rank structure (this time
with nonrandom coefficients) and the number of factors may be consistently estimated
using model selection criteria of the same type as those considered here but in the pres-
ence of an increasing number of incidental loading coefficients. In such cases, the BIC
penalty, as derived from the asymptotic behavior of the Bayes factor, has a different
form from usual and typically involves both cross section and time series sample sizes.
Some extensions of the present methods to these models will be reported in later work.
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6 Appendix

Lemma 3 Under (1) and Assumption LP,

§−100 ¡ §−100 §0β
¡
§β0§

−1
00 §β0

¢−1
§β0§

−1
00 = §

−1/2
00 c⊥

¡
c0⊥c⊥

¢−1
c0⊥§

−1/2
00 ;

where c = §
−1/2
00 §0β and c⊥ is an orthogonal complement to c: Defining e® = §0β§

−1
ββ =

§
1/2
00 c§−1ββ and e®⊥ = §

−1/2
00 c⊥; we have the alternate form

§
−1/2
00 c⊥

¡
c0⊥c⊥

¢−1
c0⊥§

−1/2
00 = e®⊥ ¡e®0⊥§00e®⊥¢−1 e®0⊥: (23)

When §0β = ®§ββ; (23) reduces to

§
−1/2
00 c⊥

¡
c0⊥c⊥

¢−1
c0⊥§

−1/2
00 = ®⊥

¡
®0⊥§00®⊥

¢−1
®⊥:

Proof of Lemma 3: Since [c; c⊥] is nonsingular we have

I = c
¡
c0c

¢−1
c0 + c⊥

¡
c0⊥c⊥

¢−1
c0⊥;

and then

§−100 ¡ §−100 §0β
¡
§β0§

−1
00 §β0

¢−1
§β0§

−1
00

= §
−1/2
00

n
I ¡ c

¡
c0c

¢−1
c0
o
§
−1/2
00 = §

−1/2
00 c⊥

¡
c0⊥c⊥

¢−1
c0⊥§

−1/2
00 ;

as required.
Observe that when §0β = ®§ββ; we have c = §

−1/2
00 §0β = §

−1/2
00 ®§ββ and we may

choose c⊥ = §
1/2
00 ®⊥ where ®⊥ is an orthogonal complement to ®: In that case we have

§
−1/2
00 c⊥

¡
c0⊥c⊥

¢−1
c0⊥§

−1/2
00 = ®⊥

¡
®0⊥§00®⊥

¢−1
®⊥;

as stated. This corresponds with the result in Johansen (1995, Lemma 10.1) where ut
is a martingale difference. In the present semiparametric case, ¢Xt = ut + ®¯0Xt−1 =
ut + ®vt−1 and the covariance ¡vu (1) = E (vt−1ut)

0 is generally nonzero, so that

§ββ = Evtv
0
t = ¡vv (0) ; (24)

§β0 = Evt−1 (ut + ®vt−1)
0 = ¡vu (1) + ¡vv (0)®

0 = ¡vu (1) + §ββ®
0; (25)

§00 = ®§ββ®
0 + ®¡vu (1) + ¡uv (¡1)®0 + ¡uu (0) : (26)

Note that e® = §0β§
−1
ββ = §

1/2
00 c§−1ββ and we may choose e®⊥ = §

−1/2
00 c⊥: In this notation,

we may write in the general case

§
−1/2
00 c⊥

¡
c0⊥c⊥

¢−1
c0⊥§

−1/2
00 = e®⊥ ¡e®0⊥§00e®⊥¢−1 e®0⊥; (27)
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as given in (23). ¤

Proof of Lemma 1: Since both ¢Xt = ut + ®¯0Xt−1 and vt = ¯0Xt are stationary
and satisfy Assumption LP, the law of large numbers gives

S00 = n−1
nX
t=1

¢Xt¢X 0
t !p §00 = ¡uu (0) + ®¡vv (0) a

0 + ®¡vu (0) + ¡uv (0) a
0;

¯0S11¯ = n−1
nX
t=1

¯0Xt−1
¡
¯0Xt−1

¢0 !p §ββ = ¡vv (0) ; and

¯0S10 = n−1
nX
t=1

¯0Xt−1¢X 0
t !p §β0 = ¡vu (1) + ¡vv (0) a

0:

In view of (14) we have

¯0⊥Xt = ¯0⊥C
tX

s=1

us + ¯0⊥®
¡
¯0®

¢−1
R (L)¯0ut + ¯0⊥CX0

=
¡
®0⊥¯⊥

¢−1
®0⊥

(
tX

s=1

us +X0

)
+ ¯0⊥®

¡
¯0®

¢−1
R (L)¯0ut;

so that the standardized process n−1/2¯0⊥X[n·] ) (®0⊥¯⊥)
−1 ®0⊥Bu (¢) ; and from (15)

we have

n−1/2
[n·]X
s=1

¯0Xs ) ¡
¡
¯0®

¢−1
¯0Bu (¢) : (28)

It follows by conventional weak convergence methods that

n−1¯0⊥S11¯⊥ )
¡
®0⊥¯⊥

¢−1
®0⊥

µZ 1

0
BuB

0
u

¶
®⊥

¡
¯0⊥®⊥

¢−1
;

¯0⊥(S10 ¡ S11¯®
0) = ¯0⊥

(
n−1

nX
t=1

Xt−1
¡
¢Xt ¡ ®¯0Xt−1

¢0)

=
nX
t=1

¯0⊥Xt−1p
n

utp
n
)

¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u +ª1wu;

¯0⊥S11¯ =
nX
t=1

¯0⊥Xt−1p
n

¡
¯0Xt−1

¢0
p
n

) ¡
¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u¯(®

0¯)−1 +ªwv;

where

ª1wu =
∞X
h=1

E
©¡

¯0⊥¢Xt

¢
u0t+h

ª
and ªwv =

∞X
h=0

E
n¡

¯0⊥¢Xt

¢ ¡
¯0Xt+h

¢0o
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are one sided long run covariance matrices involving wt = ¯0⊥¢Xt; ut and vt. Note
that

wt := ¯0⊥¢Xt = ¯0⊥ut + ¯0⊥®vt−1

so we may deduce the explicit form

ª1wu =
∞X
h=1

E
©¡

¯0⊥¢Xt

¢
u0t+h

ª
= ¯0⊥

∞X
h=1

E
©
utu

0
t+h

ª
+ ¯0⊥®

∞X
h=1

E
©
vt−1u

0
t+h

ª
= ¯0⊥¤uu + ¯0⊥® [¤vu ¡ ¡vu (1)] ; (29)

and

ªwv =
∞X
h=0

E
n¡

¯0⊥¢Xt

¢ ¡
¯0Xt+h

¢0o
= ¯0⊥

∞X
h=0

E
©
utv

0
t+h

ª
+ ¯0⊥®

∞X
h=0

E
©
vt−1v

0
t+h

ª
= ¯0⊥(¤uv + ¡uv(0)) + ¯0⊥®¤vv: (30)

Finally, using (28) and standard limit theory again, we obtain

¯0⊥S10 =
nX
t=1

¯0⊥Xt−1p
n

¢X 0
tp

n
=

nX
t=1

¯0⊥Xt−1p
n

µ
ut + ®vt−1p

n

¶0
)

¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u ¡

¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u¯

¡
®0¯

¢−1
®0

+
∞X
h=1

E
©¡

¯0⊥¢Xt

¢
u0t+h

ª
+

∞X
h=0

E
©¡

¯0⊥¢Xt

¢
v0t+h®

0ª
=

¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u

n
I ¡ ¯

¡
®0¯

¢−1
®0
o

+
∞X
h=1

E
©¡

¯0⊥¢Xt

¢
u0t+h

ª
+

∞X
h=0

E
©¡

¯0⊥¢Xt

¢
v0t+h®

0ª
=

¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
BudB

0
u®⊥

¡
¯0⊥®⊥

¢−1
¯0⊥ +ª1wu +ªwv®

0;

since ¯ (®0¯)−1 ®0 + ®⊥
¡
¯0⊥®⊥

¢−1
¯0⊥ = I (e.g., Johansen, 1995, p. 39). ¤

Proof of Lemma 2: Let S (¸) = ¸S11¡S10S
−1
00 S01; so that the determinantal equation
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(7) is jS (¸)j = 0: Defining Pn = [¯; n−1/2¯⊥] and using Lemma 1, we have¯̄
P 0n (S (¸))Pn

¯̄
=

¯̄̄̄·
¸¯0S11¯ ¸n−1/2¯0S11¯⊥
¸n−1/2¯0⊥S11¯ ¸n−1¯0⊥S11¯⊥

¸
¡
·
¯0S10S

−1
00 S01¯ n−1/2¯0S10S

−1
00 S01¯⊥

n−1/2¯0⊥S10S
−1
00 S01¯ n−1¯0⊥S10S

−1
00 S01¯⊥

¸¯̄̄̄
)

¯̄̄̄
¯
"

¸§ββ 0

0 ¸ (®0⊥¯⊥)
−1 ®0⊥

³R 1
0 BuB

0
u

´
®⊥

¡
¯0⊥®⊥

¢−1 #
¡
·
§β0§

−1
00 §0β 0

0 0

¸¯̄̄̄
¯

=
¯̄
¸§ββ ¡ §β0§

−1
00 §0β

¯̄ ¯̄̄̄
¸
¡
®0⊥¯⊥

¢−1
®0⊥

µZ 1

0
BuB

0
u

¶
®⊥

¡
¯0⊥®⊥

¢−1 ¯̄̄̄
: (31)

The determinantal equation¯̄
¸§ββ ¡§β0§

−1
00 §0β

¯̄ ¯̄̄̄
¸
¡
®0⊥¯⊥

¢−1
®0⊥

µZ 1

0
BuB

0
u

¶
®⊥

¡
¯0⊥®⊥

¢−1 ¯̄̄̄
= 0

has m¡ r0 zero roots and r0 positive roots given by the solutions of¯̄
¸§ββ ¡ §β0§

−1
00 §0β

¯̄
= 0: (32)

Thus, the r0 largest roots of (7) converge to the roots of (32) and the remainder converge
to zero.

Defining P = [¯; ¯⊥]; we have¯̄̄
P
0
(S (¸))P

¯̄̄
=

¯̄̄̄·
¯0S (¸)¯ ¯0S (¸)¯⊥
¯0⊥S (¸)¯ ¯0⊥S (¸)¯⊥

¸¯̄̄̄
=

¯̄
¯0S (¸)¯

¯̄ ¯̄̄
¯0⊥

n
S (¸)¡ S (¸)¯

£
¯0S (¸)¯

¤−1
¯0S (¸)

o
¯⊥

¯̄̄
: (33)

As in Johansen (1995, theorem 11.1), we let n ! 1 and ¸ ! 0 such that ½ = n¸ =
Op (1) : Using Lemma 1, we have

¯0S (¸)¯ = ½n−1¯0S11¯ ¡ ¯0S10S
−1
00 S01¯ = ¡§β0§

−1
00 §0β + op (1) ;

¯0⊥S (¸)¯⊥ = ½n−1¯0⊥S11¯⊥ ¡ ¯0⊥S10S
−1
00 S01¯⊥; and

¯0⊥S (¸)¯ = ½n−1¯0⊥S11¯ ¡ ¯0⊥S10S
−1
00 S01¯

= ¡¯0⊥S10S
−1
00 S01¯ + op (1) : (34)

Define

Nn = S−100 ¡ S−100 S01¯
¡
¯0S10S

−1
00 S01¯

¢
¯0S10S

−1
00 :

Using Lemma 1 and Lemma 3, we have

Nn = §−100 ¡ §−100 §0β
¡
§β0§

−1
00 §0β

¢
§β0§

−1
00 + op (1)

= e®⊥ ¡e®0⊥§00e®⊥¢−1 e®0⊥ + op (1) : (35)
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By (34) and (35) ; the second factor in (33) becomes

¯0⊥

n
S (¸)¡ S (¸)¯

£
¯0S (¸)¯

¤−1
¯0S (¸)

o
¯⊥

= ½n−1¯0⊥S11¯⊥ ¡ ¯0⊥S10NnS01¯⊥ + op (1)

= ½n−1¯0⊥S11¯⊥ ¡ ¯0⊥S10e®⊥ ¡e®0⊥§00e®⊥¢−1 e®0⊥S01¯⊥ + op (1) : (36)

By Lemma 1; we have

¯0⊥

n
S (¸)¡ S (¸)¯
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¯0S (¸)¯

¤−1
¯0S (¸)

o
¯⊥

» ½
¡
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®0⊥
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0
BuB

0
u

¶
®⊥

¡
¯0⊥®⊥

¢−1
¡
½¡

®0⊥¯⊥
¢−1

®0⊥

Z 1

0
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0
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¡
¯0⊥®⊥

¢−1
¯0⊥ +ª

¾
£ e®⊥ ¡e®0⊥§00e®⊥¢−1 e®0⊥½

¯⊥
¡
®0⊥¯⊥

¢−1
®0⊥

Z 1

0
dBuB

0
u®⊥

¡
¯0⊥®⊥

¢−1
+ª0

¾
= ½

Z 1

0
GuG

0
u ¡

µZ 1

0
GudG

0
u¯

0
⊥ +ª

¶ e®⊥ ¡e®0⊥§00e®⊥¢−1 e®0⊥µ
¯⊥

Z 1

0
dGuG

0
u +ª0

¶
;

where ª = ª1wu + ªwv®
0 and Gu (r) = (®0⊥¯⊥)

−1 ®0⊥Bu (r) is Brownian motion with
variance matrix ¡

®0⊥¯⊥
¢−1

®0⊥−®⊥(¯
0
⊥®⊥)

−1:

Equations (33), (36), and Lemma 1 reveal that the m¡ r0 smallest solutions of (7)
normalized by n converge to those of the equation¯̄̄̄
½

Z 1

0
GuG

0
u ¡

µZ 1

0
GudG

0
u¯

0
⊥ +ª

¶ e®⊥ ¡e®0⊥§00e®⊥¢−1 e®0⊥µ
¯⊥

Z 1

0
dGuG

0
u +ª0

¶¯̄̄̄
= 0;

(37)

as stated. ¤

Proof of Theorem 1
Part (a) Let ICr0 (r) denote the information criterion defined in (2) when the true

cointegration rank is r0: Cointegrating rank is estimated by minimizing ICr0 (r) for
0 · r · m: To check the consistency of this estimator, we need to compare ICr0 (r)
with ICr0 (r0) for any r 6= r0:

When r > r0; using (2) and (11) ; we have
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ICr0 (r)¡ ICr0 (r0)

=
rX

i=r0+1

log
³
1¡ ^̧

i

´
+ Cnn

−1 ¡¡2mr ¡ r2
¢
¡
¡
2mr0 ¡ r20

¢¢
=

rX
i=r0+1

log
³
1¡ ^̧

i

´
+ Cnn

−1 (r ¡ r0) (2m¡ r ¡ r0) : (38)

In order to consistently select r0 with probability 1 as n ! 1 we need
rX

i=r0+1

log
³
1¡ ^̧

i

´
+ Cnn

−1 (r ¡ r0) (2m¡ r ¡ r0) > 0; (39)

with probability 1 as n ! 1 for any r0 < r < m: From (21) ; we know that ^̧
i is

Op

¡
n−1

¢
for all i = r0 + 1; :::; r: Expanding log

³
1¡ ^̧

i

´
; we have

rX
i=r0+1

log
³
1¡ ^̧

i

´
= ¡

rX
i=r0+1

^̧
i + op

¡
n−1

¢
= Op

¡
n−1

¢
: (40)

Using (40) and Lemma 2, we then have

n

Ã
rX

i=r0+1

log
³
1¡ ^̧

i

´
+ Cnn

−1 (r ¡ r0) (2m¡ r ¡ r0)

!

= ¡
rX

i=r0+1

n^̧i + Cn (r ¡ r0) (2m¡ r ¡ r0) + op (1) ; (41)

where n^̧i for i = r0 + 1; :::; r are Op (1) : As such, as long as Cn ! 1 as n ! 1; the
second term on the right side of (41) dominates, which leads to (39) as n ! 1: Hence,
if the penalty coefficient Cn ! 1, cointegrating rank r > r0 will never be selected.
So, too few unit roots will never be selected in the system in such cases. Thus, the
criteria BIC and HQ will never select excessive cointegrating rank as n ! 1: On the
other hand the AIC penalty is fixed at Cn = 2 for all n; so we may expect AIC to
select models with excessive cointegrating rank with positive probability as n ! 1:
This corresponds to a more liberally parametrized system.

When r < r0;

ICr0 (r)¡ ICr0 (r0)

= ¡
r0X

i=r+1

log
³
1¡ ^̧

i

´
+ Cnn

−1 ¡¡2mr ¡ r2
¢
¡
¡
2mr0 ¡ r20

¢¢
= ¡

r0X
i=r+1

log
³
1¡ ^̧

i

´
+ Cnn

−1 (r ¡ r0) (2m¡ r ¡ r0) : (42)
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In order to consistently select r0 with probability 1 as n ! 1; we need

¡
r0X

i=r+1

log
³
1¡ ^̧

i

´
+Cnn

−1 (r ¡ r0) (2m¡ r ¡ r0) > 0; as n ! 1: (43)

From Lemma 2, we know that 0 < ^̧
i < 1 for i = r + 1; :::; r0: So the first term on the

right side of (42) is a positive number that is bounded away from 0 and the second term
on the right side of (42) is a negative number of order O

¡
Cnn

−1¢ : In order for (43)
to hold as n ! 1; we therefore require only that Cn=n = o (1) ; i.e. that the penalty
coefficient must pass to infinity slower than n: For each of the criteria AIC, BIC and
HQ, the penalty coefficient Cn ! 1 slower than n: Hence, these three information
criterion all select models with insufficient cointegrating rank (or excess unit roots)
with probability zero asymptotically.

Combining the conditions on Cn for r > r0 and r < r0; it follows the informa-
tion criterion will lead to consistent estimation of the cointegration rank provided the
penalty coefficient satisfies Cn ! 1 and Cn=n ! 0 as n ! 1:

Part (b) Under AIC, Cn = 2: The limiting probability that AIC(r0) · AIC(r)
for some r · r0 is given by

lim
n→∞

P fAIC(r0) · AIC(r)g

= lim
n→∞

P

(
¡

r0X
i=r+1

log
³
1¡ ^̧

i

´
+ 2n−1 (r ¡ r0) (2m¡ r ¡ r0) > 0

)

= lim
n→∞

P

(
r0X

i=r+1

log
³
1¡ ^̧

i

´
< 2n−1 (r ¡ r0) (2m¡ r ¡ r0)

)
= 1; (44)

because 0 < ¸i < 1 for i = r + 1; :::; r0 are the r0 ¡ r smallest solutions to (20) and
then

Pr0
i=r+1 log (1¡ ¸i) < 0; giving (44). Hence, when r0 is the true rank, AIC will

not select any r < r0 as n ! 1; i.e.,

lim
n→∞

P (r̂AIC = rjr < r0) = 0: (45)

Let »r0+1 > ::: > »m be the ordered roots of the limiting determinantal equation
(21). When r0 > r ¸ r0; AIC(r) < AIC(r0) iff

r0X
i=r+1

log
³
1¡ ^̧

i

´
+ Cnn

−1 ¡r0 ¡ r
¢ ¡

2m¡ r0 ¡ r
¢
> 0;
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so that the limiting probability that r will be chosen over r0 is

lim
n→∞

P
©
AIC(r) < AIC(r0)

ª
= lim

n→∞
P

(
¡

r0X
i=r+1

n^̧i + 2
¡
r0 ¡ r

¢ ¡
2m¡ r0 ¡ r

¢
> 0

)

= P

(
r0X

i=r+1

»i < 2
¡
r0 ¡ r

¢ ¡
2m¡ r0 ¡ r

¢)
: (46)

Accordingly, the probability that AIC will select rank r is equivalent to the probability
that r is chosen over any other r0 ¸ r0. This probability is

lim
n→∞

P (r̂AIC = rjr > r0)

= P

(Ã
m
\

r0=r+1

(
r0X

i=r+1

»i < 2
¡
r0 ¡ r

¢ ¡
2m¡ r0 ¡ r

¢)!
\Ã

r−1
\

r0=r0

(
rX

i=r0+1

»i > 2
¡
r ¡ r0

¢ ¡
2m¡ r ¡ r0

¢)!)
; (47)

where the first part is the limiting probability that r is chosen over all r0 > r and the
other part is the probability that r is chosen over all r0 · r0 < r: Any rank less than r0
is not taken into account here because those ranks are always dominated in the limit
by r0 from (45).

The probability that the cointegration rank r0 is consistently estimated by AIC as
n ! 1 is

lim
n→∞

P (r̂AIC = r0)

= P

"
m
\

r=r0+1

(
rX

i=r0+1

»i < 2 (r ¡ r0) (2m¡ r ¡ r0)

)#
: (48)

This is a special case of (47) with r = r0: ¤

The unit root case

When the system order is m = 1; the procedure provides a mechanism for unit root
testing. If r0 = 0; i.e. the model has a unit root, we have by (48)

lim
n→∞

P (r̂AIC = 1jr0 = 0) = P f»1 > 2g = 1¡ P f»1 < 2g and

lim
n→∞

P (r̂AIC = 0jr0 = 0) = P f»1 < 2g ; (49)
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where »1 is the solution to (21) when m = 1 and r0 = 0: In this case, we see that

»1 =

³R 1
0 GudG

0
u¯

0
⊥ +ª

´2³R 1
0 GuG0u

´
§00

=

³R 1
0 BudBu + ¸

´2³R 1
0 B2u

´
§00

since Gu = Bu; e®⊥ = 1; ¯⊥ = 1;and ª = ¸ in this case.
If r0 = 1; when the model is stationary, we have

lim
n→∞

P (r̂AIC = 0jr0 = 1) = 0 and lim
n→∞

P (r̂AIC = 1jr0 = 1) = 1; (50)

using (44) : These results for the scalar case m = 1 are consistent with those in Phillips
(2008). ¤
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