# More hypotheses versus more power: Designing a Multiple Hypothesis Testing Experiment Subject to a Maximum Overall Number of Possible Observations 

Andreas Futschik<br>Dept. of Statistics, University of Vienna, Universitätsstr. 5/9<br>A-1010 Vienna, Austria.<br>andreas.futschik@univie.ac.at


#### Abstract

With modern complex datasets, situations involving a large number of testing problems become more and more common. In some cases, the overall number of observations $m$ to be collected is limited, but there is some choice at the design stage concerning the allocation of the observations among the hypotheses testing problems of interest. Indeed, when $m$ is fixed, the consideration of a large number $K$ of hypothesis pairs implies a small average number of observations $n \approx m / K$ for the individual problems. As a consequence, one faces small power when a multiple hypothesis testing procedure is used. Thus the overall number of rejections of null hypotheses may well be increased by restricting inference to a smaller number $k$ of hypothesis pairs for which a larger number of observations will then be available. We are interested in finding the optimum number $k$ to pick out of the $K$ hypotheses. We present some general observations and provide asymptotic approximations for the optimum $k$ as $m$ and $k$ both tend to infinity. We also give an illustrative example. Further details can be found in Futschik and Posch (2005).


## Reference:

Futschik, A. and Posch, M. (2005) On the Optimum Number of Hypotheses when the Number of Observations is Limited. Statistica Sinica 15, 841-855.

