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Abstract

A new adaptive test is proposed for the null of absence of serial correlation. The

adaptive approach is an elegant way to circumvent the fact that testing for absence

of correlation is an ill-posed problem. Moreover, the adaptation makes better use

of the smoothness of the underlying alternative, improving on the consistency rates

of the non-adaptive approaches and achieving rates that are arbitrary close to the

parametric rate. The test statistic combines several statistics using a new selection

procedure which mimics an optimal bias-variance tradeoff appropriate for testing.

The critical values can be based on a chi-square distributions, avoiding a need for

bootstrap procedures. The test is rate optimal in the adaptive sense and can also,

under some conditions, detect Pitman local alternatives converging to the null at a

parametric rate. Simulations experiments illustrate the practical relevance of the new

test, both under the null and the alternative.
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1. Introduction

Since the pioneering work of Durbin and Watson (1950) and Box and Pierce (1970), testing for the

absence of correlation has become an important econometric tool. Ignoring autocorrelation of the residuals

in a linear regression model can lead to erroneous confidence intervals or tests. Correlation of the residuals

from an ARMA model can indicate an improper choice of the order. Such a conclusion can be extended

to many nonlinear specifications, including among other ARCH specification or stochastic volatility models

where it is expected to obtain uncorrelated squared and in level residuals. In macroeconomics and finance,

the presence of autocorrelation can indicate a failure of efficiency conditions that often materialized as a

martingale difference hypothesis.

When testing for serial correlationa, an important practical and theoretical difficulty comes from the

infinite-dimensional, or nonparametric, nature of the alternatives. Testing for the absence of correlation

is, using the terminology of Pőtscher (2002), an ill-posed problem because the null and the alternative

are indistinguishable in the sense of Ingster (1993). This probably explains why such a large range of

specific alternatives has been considered in the literature, and why a unified approach has failed to emerge.

In a test in the spirit of Anderson (1993), Delgado, Hidalgo and Velasco (2005) consider Pitman local

alternatives converging to the null at a parametric rate. Such alternatives are probably too simple because

the nonvanishing covariances are assigned to given lags that cannot vary with the sample size, whereas

such a property is an important ingredient of many alternatives. In particular, such tests can have low

power against alternatives exhibiting important correlations for high lags, as seasonal ones, see Paparoditis

(2000). Hong (1996) and Paparoditis (2000) propose tests depending on a smoothing parameter designed for

alternatives with a smooth spectral density having a certain number of bounded derivatives. Characterizing

smoothness using the rate at which the covariance decreases when the lag index grows, Ermakov (1994)

derives an optimal minimax testing rate that describes the smallest sequence of alternatives that can be

detected. However, his results assume that the rate at which the covariance goes to 0 is known, a restriction

which is rather ad hoc in view of the large and unrestricted alternative set. This leads to tests that depends

on this a priori information, a fact that does not facilitate practical implementations of this approach.

This paper argues that the adaptive approach is a convenient practical way to circumvent the ill-

posedness of the no-correlation tests. Like the minimax approach, the adaptive approach assumes that the

covariance of a stationary process decreases to 0 at a certain rate when the lag index increases, but considers

this rate unknown. Adaptive methods look for tests that are consistent over arbitrarily large subsets of the

alternatives, where the subsets consist of stationary processes with covariances going to 0 with an increasing

variety of possible rates. In addition, it is possible in many cases to derive adaptive consistency rates, that

are indexed by the unknown rate at which the covariance goes to 0. In particular, optimal adaptive testing

rates are known if the covariance goes to 0 with an unknown polynomial rate. The paper gives palatable and

concrete examples of adaptive consistency rates that are close to the parametric rate achieved in Delgado et

al. (2005) when the covariance goes to 0 fast enough.

The adaptive methodology has already led to many developments. A landmark paper is Spokoiny

(1996) who derives optimal adaptive rates and a corresponding adaptive rate-optimal test for the theoretical

continuous-time regression model. Horowitz and Spokoiny (2001) has proposed implementable rate-optimal
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adaptive tests in the context of regression specification testing. Their procedure is based on the maximum

of statistics corresponding to various smoothing parameters, see also Fan (1996). Gao and King (2004) have

built on the maximum approach to propose a specification test for a diffusion model. Fan and Yao (2005)

describe an adaptive maximum test for the absence of correlation but do not investigate its theoretical prop-

erties. Our adaptive approach builds on a different methodology. Indeed, as noted in Guerre and Lavergne

(2005), the power of maximum tests is affected by a standardization that leads to downweight statistics

that are powerful against irregular alternatives. As noted in Fan (1996), the asymptotic critical values of

maximum tests do not perform well in practice so that intensive numerical bootstrap procedures must be

used as in Horowitz and Spokoiny (2001). This contrasts with the simple modified selection procedure used

in Guay and Guerre (2006) that gives, by retaining a low dimensional statistic under the null, surprisingly

accurate critical values without resorting to the bootstrap.

The distinctive features of the proposed serial correlation adaptive test are as follows. As in Guerre

and Lavergne (2005) and Guay and Guerre (2006), the test builds on a data-driven choice of the number of

covariances used in the test, using a modified AIC/BIC selection procedure specific to tests, applied to the

test statistic considered in Hong (1996). Under the null, the data-driven criterion selects a low number of

covariances so that simple critical values are expected to perform well, avoiding so the bootstrap procedure

proposed by Paparoditis (2000) for statistics using a high number of covariances. Under the alternative, the

selection procedure is designed to mimic optimality in a nonparametric standard trade-off. Such a procedure

addresses a common complaint about the lack of optimal choice of a smoothing parameter, see Delgado

et al. (2005) among others. More specifically, the resulting test is shown to be adaptive rate-optimal for

covariances decreasing at an unknown polynomial rate when the lag index grows. The important case of

covariances that decrease with an exponential rate, as for ARMA processes, is also considered. For such

an alternative, the test is consistent against alternatives that converge to the null at a rate which is very

close to the parametric rate. Finally, the test can also be consistent against some local Pitman alternatives

converging to the null with a parametric rate.

The rest of the paper is organized as follows. Section 2 gives some notations, heuristic developments,

definition and results of the literature concerning the construction of the test, our ill posed nonparametric

problem and adaptation. Section 3 first gives our main assumptions. Section 3.2 is devoted to the asymptotic

level of the test whereas Section 3.3 deals with the adaptive consistency properties of the test, as well as with

consistency against local Pitman alternatives. Section 4 is a simulation experiment. Section 5 concludes the

paper. The proofs are gathered in Section 6 and in three Appendices.

2. Notations and heuristics for the new test and smoothness adaptation

Consider some estimated residuals ût = ut(θ̂), t = 1, . . . , n, where θ̂ is an estimator of a finite dimen-

sional parameter θ. Assume that θ̂ converges to θ in so that the estimated residuals are close to the actual

residuals ut = ut(θ). Suppose that {ut, t ≥ 1} is a stationary zero-mean process, with a finite variance

denoted R0 or σ2. Our aim is to test for the absence of correlation

H0 : Rj = Cov(ut, ut+j) = 0 for all integer numbers j 6= 0,
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against alternatives which satisfies the correlation summability condition

H1 : 0 <
∞∑

j=1

(Rj/R0)
2
<∞ ,

where
(∑∞

j=1(Rj/R0)2
)1/2

is the (Euclidean) distance of {ut, t ≥ 1} to the null.

We shall characterize alternatives using the rate at which the covariance goes to 0 when the lag index j

grows. Consider a nondecreasing sequence v = (vj , j ≥ 0) such that v0 = v1 = 1 and a positive real number

L. Define the associated smoothness, or rate, classes as the ellipsoids

(2.1) C(L,v) =

{ut, t ≥ 1} is a zero-mean stationary process s.t.
∞∑

j=1

v2
j (Rj/R0)

2 ≤ L2

 .

The sequence v in the definition determines the fastest rate at which the covariance Rj can goes to 0. Indeed,

v2
j (Rj/R0)

2 ≤
∞∑

j=1

v2
j (Rj/R0)

2 ≤ L2 which gives |Rj | ≤ LR0/vj for j ≥ 1.

Any stationary process with squared summable covariance is in a class C(L,v), so that1

(2.2) H1 =
⋃

L>0,v∈V

{ut, t ≥ 1} in C(L,v) with
∞∑

j=1

(Rj/R0)
2
> 0

 =
⋃

L>0,v∈V
H1(L,v) ,

where V is the set of sequences v with non decreasing vj satisfying v0 = v1 = 1. Some of our results assume

that v satisfying the square summability condition

(2.3) v = (vj , j ≥ 1) is such that v0 = v1 = 1, vj is non increasing in j, and
∑∞

j=1 v
−2
j <∞,

which imposes in particular that vj ≥ O(j1/2) since jv−2
j ≤

∑j
k=1 v

−2
k ≤

∑∞
k=1 v

−2
k . An important

consequence of (2.3) is to bound the spectral density of the process {ut, t ≥ 1} in C(L, s). Indeed,

supλ∈[−π,π] |f(λ)| ≤
∑∞

j=0 |Rj |/π with, by the Cauchy-Schwarz Inequality,

(2.4)
∞∑

j=0

|Rj | =
∞∑

j=0

v−1
j × (vj |Rj |) ≤

 ∞∑
j=0

v−2
j

1/2 ∞∑
j=0

v2
jR

2
j

1/2

≤

 ∞∑
j=0

v−2
j

1/2

(1 + L)R0 .

Although the covering property (2.2) is particularly appealing, most of the literature has been concerned

with more specific smoothness classes, see Ibragimov and Has’minskii (1981). These classes, described in

Examples 1 and 2, respectively correspond to polynomial and exponential rates for the covariance.

Example 1: Polynomial rate. In the case where vj = js for some s > 0, rewrite C(L,v) in (2.1) as

C(L, s). A nice feature of these classes relates their inclusion properties with the smoothness index (L, s):

if L′ ≤ L and s ≤ s′, then C(L′, s′) ⊂ C(L, s). An important case of interest consists in integer index s,

1To construct a v in V and a finite L such that
P∞

j=1 v
2
jR

2
j ≤ LR2

0 for a given {Rj , j ≥ 0} with
P∞

j=1R
2
j <∞, observe that

there is an increasing sequence np with n1 = 1 such that
P∞

j=np
R2

j ≤ 2−pR2
0. Setting vj = 2(p−1)/4 for j in [np, np+1) gives

a sequence in V such that
P∞

j=1 v
2
j (Rj/R0)2 =

P∞
p=1 2(p−1)/2

P
np≤j<np+1

(Rj/R0)2 ≤
P∞

p=1 2−(p+1)/2 = 1/(1− 1/
√

2).
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which allows to better explain the use of the word “smoothness”. Indeed, the s-th derivative of the spectral

density function is

f (s)(λ) =
1
2π

+∞∑
j=−∞

(ij)sRj exp(ijλ) so that
∫ π

−π

(
f (s)(λ)

)2

dλ = 2
∞∑

j=1

j2sR2
j ,

showing that {ut, t ≥ 1} is in C(L, s) provided that the s-th derivative of its spectral density function exists

in the mean square sense and has a mean square norm smaller than 2L2.2 Such smoothness classes were

considered in Hong (1996) under the restriction that s = 2. This also parallels the smoothness classes

considered in Horowitz and Spokoiny (2001) who used a uniform norm in place of the mean squared one. In

the context of polynomial decays of the covariance, (2.3) imposes in particular that the smoothness index s

must be strictly larger than 1/2, a condition that rules out some long-memory processes.3

Example 2: Exponential rate and ARMA processes. In the case vj = exp(jν) with ν > 0, the

spectral density is analytic with an infinite number of derivatives, and we denote this class as A(ν, L). This

smoothness class contains ARMA processes. Indeed, if the AR polynomial function a(z) of {ut, t ≥ 1} has

its roots z` outside the unit circle, then Rj = O(jq1/minj
` |z`|), see Brockwell and Davis (1987, Formula

(3.3.10) p.93). Hence an ARMA process is in A(L, ν) provided ν < log min` |z`| and L is large enough.

2.1. Construction and rationale of the test. The construction of our test combines statistics that were

considered in Hong (1996). Consider a kernel function K(·) and a smoothing parameter p that diverges

slowly enough. Hong (1996) proposed to estimate the squared distance
∑∞

j=1(Rj/R0)2 using Ŝp/R̂0 where

Ŝp = n
n−1∑
j=1

K2(j/p)R̂2
j , R̂j =

1
n

n−|j|∑
t=1

ût+|j|ût .

Large values of Ŝp/Ŝ0 favors the presence of correlation. Critical values can be based on the asymptotic

normal distribution of
Ŝp/R̂

2
0 −

∑n−1
j=1 (1− j/n)K2(j/p)

(2p)1/2
.

Our adaptive test modifies Hong (1996) by considering a data-driven choice of the number of covariance

p used to perform the test. Assume that p is to be chosen in a set P with minimal and maximal values p

and p. Calculations similar to Hong (1996) show that suitable approximations for the mean and variance of

(Ŝp − Ŝp)/R2
0 under independence of the ut’s are, respectively

E(p, p) = E(p)− E(p) with E(p) =
n−1∑
j=1

(
1− j

n

)
K2

(
j

p

)
,

V 2(p, p) = 2
n−1∑
j=1

(
1− j

n

)2(
K2

(
j

p

)
−K2

(
j

p

))2

.

2This can be extended to the case of non integer number s, see Ibragimov and Has’minskii (1981).
3For instance, Granger and Joyeux (1980) consider the class of processes (1 − B)dut = εt where {εt, t ∈ Z} is a white

noise process and B the backward operator. This class is stationary provided d is in (−1/2, 1/2), with spectral density

(1− exp(−iλ))−2d/2π, so that (2.3) rules out the case d > 0. However, the covariance Rj are of order 1/j1−2d, so that, for d

in (−1/2, 0) such processes are in C(L, s) as soon as s < 1/2− 2d and L is large enough.
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Our data-driven choice of the number of covariances used in the test is4

(2.5) p̂ = arg max
p∈P

(
Ŝp − Ŝp

R̂2
0

− E(p, p)− γnV (p, p)

)
= arg max

p∈P

(
Ŝp

R̂2
0

− E(p)− γnV (p, p)

)
, γn > 0 .

Such a selection procedure would retain a p̂ equal to p for an infinite penalty sequence γn, so that γn

can be interpreted as quantifying a preference for the test statistic Ŝp that uses the minimal number of

covariances p in P. Under the null of independence of the ut’s, the Tchebycheff Inequality yields that

(Ŝp − Ŝp)/R̂2
0 = E(p, p) +OP(V (p, p)) so that, if γn diverges

Ŝp − Ŝp

R̂2
0

− E(p, p)− γnV (p, p) P→ −∞ for p 6= p,

whereas this quantity is equal to 0 for p = p. Hence, on an informal ground, assuming that γn diverges fast

enough should produce in (2.5) a p̂ asymptotically equal to p. As a consequence, the null limit distribution

of the test statistic Ŝbp is the one of Ŝp. Consider the following approximation of the variance of Ŝp/R
2
0,

V 2(p) = 2
n−1∑
j=1

(
1− j

n

)2

K4

(
j

p

)
.

The rejection region of the test is

Ŝbp
R̂2

0

− E(p) ≥ V (p)z(α) , with p̂ as in (2.5) and z(α) = zn(α) satisfying5(2.6)

lim
n→∞

P

(
Ŝp

R̂2
0

− E(p) ≥ V (p)z(α)

)
= α under H0.6(2.7)

The rationale behind our data-driven p̂ in (2.5) can be understood from a standard bias-variance analysis

for the statistics Ŝp under the alternative. Neglecting the estimation error ût−ut suggests that these statistics

are close to

S̃p = n
n−1∑
j=1

K2(j/p)R̃2
j , R̃j =

1
n

n−|j|∑
t=1

ut+|j|ut .

Assume in a first step that the alternatives are in the known smoothness class C(v, L). The bounds established

in Propositions 5 and 6 in the Proof section gives, under some additional conditions

E[S̃p/R
2
0]− E(p) ≥ C

n
 ∞∑

j=1

(Rj/R0)2 − (L/vp)2

− (1 + L)2

 ,

Var
(
S̃p/R

2
0

)
≤ C(1 + L)2

 ∞∑
j=1

v−2
j

n n∑
j=1

R2
j + (1 + L)2

 ∞∑
j=1

v−2
j

 p

 .

4The AIC and BIC selection procedures would use, in this context, a penalty term γnp, which differs from our E(p) +

γnV (p, p).
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Neglecting the effect of the estimation of θ and combining the mean and variance bound then gives the bias

variance lower bound

(2.8)
Ŝp

R̂2
0

− E(p) ≥ C(1 + oP(1))n
∞∑

j=1

(Rj/R0)2 −

n( L
vp

)2

+ (1 + L)

 ∞∑
j=1

v−2
j

1/2

OP(p1/2)

 .

Such a lower bound is the cornerstone of our analysis. Indeed, since V (p) is asymptotically proportional to

p1/2, it shows that a test based on (Ŝp/R̂
2
0 −E(p))/V (p) is consistent as soon as the RHS of (2.8) diverges.

This, in turn, holds provided the magnitude n
∑∞

j=1(Rj/R0)2 is larger than n(L/vp)2 + O(p1/2). Hence,

focusing on the detection of the smallest possible alternative in the known smoothness class C(L,v) leads to

the following optimal choice of p = πn(L,v), where

πn(L,v) = arg min
p

n( L
vp

)2

+ (1 + L)

 ∞∑
j=1

v−2
j

1/2

p1/2

 , allowing detections(2.9)

of alternative with order ρn(L,v) =
1

n1/2
min

p

n( L
vp

)2

+ (1 + L)

 ∞∑
j=1

v−2
j

1/2

p1/2


1/2

.

For the smoothness classes in Examples 1 and 2, ρn(L,v) and πn(L, v) are proportional to

ρn(L, v) �


L1/(4s+1)

(
1+L

n

)2s/(4s+1)
for C(L, s) as in Example 1, with s > 1/2,

(1 + L)1/2

(
ln1/2 L2νn

1+L

ν1/2n

)1/2

for A(L, ν) as in Example 2,
(2.10)

πn(L, v) �


(

L2n
(1+L)+γn

)1/(2s+1/2)

for C(L, s) as in Example 1, with s > 1/2,
1
ν ln

(
L2νn

(1+L)+γn

)
for A(L, ν) as in Example 2.

Although the analytic class A(L, ν) is infinite dimensional, the corresponding testing rate is close to the

parametric rate 1/o(
√
n).7 Note also that the optimal πn(L,v) decreases with the smoothness of the alter-

natives, being polynomial and decreasing with respect to s in Example 1 and logarithmic for Example 2.

For Example 1, the testing rate is proportional to n−s/(2s+1/2) and converges to 0 faster than the optimal

nonparametric estimation rate, which is proportional to n−s/(2s+1). This is one of the numerous illustrations

of the fact that methods that are optimal for estimation will not be for testing, as in can also be guessed by

the lower bias variance bound (2.8).

However, such results are of poor guidance for practical implementations. Indeed, the optimal choice

of p in (2.9), πn(L,v), depends upon on the smoothness indexes v and L. Hence, the resulting test requires

the knowledge of these parameters, an a priori information which is not at hand in general. As explained

now, the data-driven selection (2.5) aims to produce a p̂ that mimics the unfeasible bias variance trade off

7Since we mostly focus on rate consistency, the associated parametric consistency rate is 1/o(
√
n) instead of 1/

√
n. Note

however that ρn(L, s) is not a consistency rate, but a detection testing rate, meaning that the test using πn(L,v) can have

arbitrarily large asymptotic power against alternatives at distance tρn(L,v) from the null by increasing t. All the other rates

considered in this paper are consistency rates, i.e. the considered test has asymptotic power of 1 against alternatives that are

at this rate times t from the null, provided t is large enough. See Definition 1 below.
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(2.9), in the absence of a priori information on the smoothness parameters v and L. To see this, observe

first that (2.5) gives

Ŝbp
R̂2

0

= max
p∈P

(
Ŝp

R̂2
0

− E(p, p)− γnV (p, p)

)
+ E(p̂, p) + γnV (p̂, p)

≥ max
p∈P

(
Ŝp

R̂2
0

− E(p, p)− γnV (p, p)

)
≥ Ŝp

R̂2
0

− E(p, p)− γnV (p, p)

=
Ŝp

R̂2
0

− E(p) + E(p)− γnV (p, p), for all p in P.(2.11)

Lemma 1 in the proof section establishes that V (p, p) is of exact order p1/2 under suitable conditions. Hence,

substituting (2.11) in (2.8) gives,

Ŝbp
R̂2

0

− E(p) ≥ Ŝp

R̂2
0

− E(p)− γnV (p, p) +OP(p1/2) for all p in P

≥ C(1 + oP(1))n
∞∑

j=1

(Rj/R0)2 −

n( L
vp

)2

+ (1 + L)

 ∞∑
j=1

v−2
j

1/2

OP(p1/2)

− γnO(p1/2) for all p in P

≥ C(1 + oP(1))n
∞∑

j=1

(Rj/R0)2 −OP(1)max
p

n( L
vp

)2

+

(1 + L)

 ∞∑
j=1

v−2
j

1/2

+ γn

 p1/2

 .

The test (2.6) will be consistent if this lower bound diverges fast enough, implying that n
∑∞

j=1(Rj/R0)2

can be at best of the order that multiplies the OP(1) term. Hence, for a diverging γn and under (2.3), a

candidate to be the detection rate of the adaptive test (2.6) is

(2.12) Rn(L,v) =
1

n1/2
min

p

[
n

(
L

vp

)2

+ γnp
1/2

]1/2

.

In the specific cases of Examples 1 and 2, this leads to the adaptive detection rates

(2.13) Rn(L,v) �

 L1/(4s+1)
(

γn

n

)2s/(4s+1) for the classes C(L, s) in Example 1 with s > 1/2,(
γn

n
1

ν1/2 ln1/2
(

L2νn
γn

))1/2

for the classes A(L, ν) in Example 2.

Comparing the nonadaptive rates (2.9) and (2.10) with their adaptive counterparts (2.12) and (2.13)

suggests that there is a loss due to the diverging penalty sequence γn, although this term can diverge with a

very slow rate as (ln lnn)1/2, see Theorem 1 below. Such a loss in term of detection rates would be indeed a

price to pay for not using any a priori information on the smoothness parameters v and L. However, this is

a pessimistic interpretation that somehow hides what are the benefits of adaptation. To see that, consider

an alternative in some unknown C(L, s), L being in [L,L] and s in [s, s]. Hence the a priori smoothness

information is that the alternative is at least in C(L, s). Calibrating a test using a deterministic p for

this smoothness class leads to use the statistic Ŝπn(L,s), with πn(L, s) as in (2.10). Such a test can detect

alternatives at a distance of order ρn(L, s) � n−s/(2s+1/2) from the null, contrasting with the adaptive test

(2.6) which, as shown below, can achieve a detection rate of order (n/γn)−s/(2s+1/2), where s ≥ s is the

true smoothness of the alternative. This adaptive rate can be much better than n−s/(2s+1/2) if s > s and
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γn diverges slowly enough, being for instance of a logarithmic order. In particular, the resulting rate can be

arbitrarily close to (n/γn)−1/2, a rate which has a parametric flavor for such γn. It is also shown below that

the adaptive test (2.6) can detect analytic alternatives in A(L, ν) as well as local alternatives converging to

the null with a rate very close to the parametric rate 1/o(
√
n).

2.2. Ill-posed nonparametric testing and optimal adaptation. The candidate adaptive testing rate

(2.12) is specific to the adaptive test (2.6) and an important issue is to compare this rate which the ones

that can be achieved by other tests. Introducing optimal adaptive detection rates considerably simplify such

comparisons. In addition, smoothness adaptation can be viewed as an interesting way to overcome the fact

that testing H0 against H1 is an ill posed problem, as explained now.

Why testing for the absence of correlation should be concerned with smoothness is far from being

obvious at first sight. Indeed, it is, at first sight, much more appealing to look for a test that can detect all

sequence of alternatives that stay at a non vanishing distance from the null, regardless the smoothness of

these alternatives. This is however impossible when testing for the absence of correlation, as illustrated by

the simple following example. Assume that there is no need to estimate a parameter θ so that n observations

from {ut, t ≥ 1} are directly available. Then it is easy to show that all test cannot distinguish H0 from a

sequence of simple MA(n) process like u(n)
t = εt −ψεt−n, ψ 6= 0, with i.i.d. standard normal error terms εt.

Indeed, the n observations {u(n)
1 , . . . , u

(n)
n } are independent, so that even the optimal Neyman-Pearson test

will not detect correlation. Moreover, Cov(u(n)
t , u

(n)
t−n) = −ψ and this sequence remains at a non vanishing

distance of the null since
∑∞

j=1(R
(n)
j /R

(n)
0 )2 = ψ2/(1 + ψ2)2.

Hence, finding a test having power against all sequences of alternatives satisfying
∑∞

j=1(Rj/R0)2 ≥ ρ2

is a problem without a solution for some ρ, so that it can be called ill posed, following the terminology of

Pötscher (2002). A popular approach in nonparametric to tackle such issues proceeds by imposing additional

“smoothness” restrictions, see e.g. Ibragimov and Has’minskii (1981) and Ingster (1993). In our framework,

this amounts to consider specific alternatives in the smoothness class C(L,v).8 In the case of stationary

Gaussian time series, Ermakov (1994) has derived the optimal minimax rate for testing absence of correlation,

i.e. the best rate ρ∗n(L,v) for which there is a test exhibiting some power against all sequences of alternatives

in C(L,v) at distance O(ρ∗n(L,v)). In particular, for the smoothness classes C(L, s) and A(L, s) of Examples

1 and 2, the optimal minimax testing rates are given by (2.10) and tests based on Ŝπn(L,v), with πn(L,v) as

in (2.10), are minimax rate-optimal.

However, this approach assumes that the smoothness class C(L,v) is known. As explained when con-

structing the adaptive test (2.6), the adaptive approach aims to relax such unrealistic assumption. More

specifically, define, for H1(L,v) as in (2.2),

H1(ρ;L,v) =

{ut, t ≥ 1} in H1(L,v) with
∞∑

j=1

(
Rj

R0

)2

≥ ρ2

 ,

8Observe that the sequence of MA(n) processes u
(n)
t = εt − ψεt−n, with R

(n)
n = −ψ, cannot stay in any C(L,v) since

1/vj decreases to 0 with j. Indeed, if so, |R(n)
n | ≤ LR

(n)
0 /vn gives that |ψ|/(1 + ψ2) ≤ L/vn, a condition that contradicts

limn→∞ 1/vn = 0.
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so that (2.2) gives, for H1(ρ) =
{
{ut, t ≥ 1} with

∑∞
j=1 (Rj/R0)

2 ≥ ρ2
}

,

H1(ρ) =
⋃
L

⋃
v∈V

H1(ρ;L,v) .

Since testing H0 against H1(ρ) is an ill posed problem, the adaptive approach looks instead for test that are

consistent against any sequence of alternatives in

(2.14)
⋃

L≤[L,L]

⋃
v;
P∞

j=0 v−2
j ≤V

H1(ρ;L,v) ,

for any arbitrary finite L, L, and V . Note that this amounts to replace H1(ρ) by a family of suitable

“approximations” in order to deal with a well-posed problem and to find consistent tests. In addition, the

adaptive approach strengthens consistency by finding adaptive testing rates, as seen for instance from (2.12).

Although the power of many tests, as our test (2.6), can be studied over such general classes, the

literature has mostly focused on adaptive rate-optimality with respect to the classes C(L, s) in Example 1.

We follow here this trend and define adaptive rate optimality as follows. Although Definition 1 differs

from the one used in Horowitz and Spokoiny (2001) by using sequence instead of minimax power, the two

definitions are identical as shown in Appendix D.

Definition 1. The optimal adaptive testing rate R∗
n(·, ·) satisfies the two following conditions:

(i) For any α in (0, 1), there is a test τ∗n with asymptotic level α which is consistent (i.e. has asymptotic

power 1) against any stationary alternatives {u(n)
t , t ≥ 1} in C(Ln, sn) with ∞∑

j=1

(
R

(n)
j /R

(n)
0

)2

1/2

≥ tR∗
n(Ln, sn) ,

provided Ln and sn are bounded away from 0 and infinity and t is taken large enough.9

(ii) If Rn(L, s) = o(R∗
n(L, s)) for some L, s, then there is a sequence of stationary alternatives {u(n)

t , t ≥
1} in C(Ln, sn) with Ln and sn bounded away from 0 and infinity, and ∞∑

j=1

(
R

(n)
j /R

(n)
0

)2

1/2

≥ Rn(Ln, sn) ,

that cannot be detected by tests of asymptotic level α in (0, 1) (i.e. tests have at best an asymptotic

power of α against this alternative).

In this Definition, considering arbitrary sequences of smoothness parameters Ln and sn gives a mathe-

matical content to the fact that the smoothness of the underlying alternative is unknown. The second part

of the Definition means that there is no test detecting alternatives going to the null faster than R∗
n(·, ·).

The first part states existence of tests consistent against alternatives converging to H0 but at a distance

larger than tR∗
n(·, ·) of the null, t large enough. Spokoiny (1996) has derived the adaptive optimal rate in

9It would have been possible here to weaken consistency by the usual power property that says that, for any β in (0, 1), the

power of the test can be made larger than β by increasing t. However most adaptive rate-optimal test achieve consistency, see

for instance Theorem 2 below.
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the continuous time regression model dX(t) = f(t)dt + dW (t)/
√
n, where W (·) is a Brownian Motion over

[0, 1], see also Ingster and Suslina (2003). Thanks to an asymptotic equivalence result of Golubev, Nussbaum

and Zhou (2005) that holds for s > 1/2, this result extends to testing H0 against H1 in case of Gaussian

stationary processes, and when the time series {ut, t ≥ 1} is directly observed.10 The adaptive optimal rates

are, for s > 1/2 and L > 0,

(2.15) R∗
n(L, s) = L1/(4s+1)

(√
ln lnn
n

)2s/(4s+1)

.

Note that this rate can be made arbitrarily close to (ln lnn)1/4/
√
n by increasing s, which is very close to the

parametric rate. In view of Definition 1-(i), detecting alternative which converges to the null with such rates

that are close to parametric is feasible in the adaptive approach, contrasting with the approach that considers

that the smoothness index L and s are given. However, the adaptive optimal rate is always worst than the

parametric rate 1/o(
√
n), meaning that tests detecting all possible sequence of alternatives converging to

H0 with the parametric rate1/o(
√
n) do not exist. As detailed in the preceding section, the fact that the

adaptive optimal rate (2.15) is apparently worst by an (inessential) (ln lnn)1/2 than the minimax optimal

rate ρ∗n(L, s) in (2.10) should not be misinterpreted.

3. Main results

This section is organized as follows. Subsection 3.1 describes our main assumptions. This completes in

particular the construction of the test by proposing a suitable dyadic choice of the set P of admissible p as

well as describing the order of p and p. Subsection 3.2 concerns the asymptotic level of the test (2.6) while

Section 3.3 investigates its adaptive detection properties. In particular, the adaptive rate-optimality of the

test is a consequence of the more general Theorem 2, see the discussion following this statement.

3.1. Main assumptions. Our main assumptions are as follows. As it can be expected from Definition

1, some of them consider sequences of stationary zero mean processes {u(n)
t , t ≥ 1}. C1, . . . , C5 are some

absolute constants that are independent of the considered sequence of processes {u(n)
t , t ≥ 1}.

Assumption K. The kernel function K(·), from R+ to R, is bounded away from 0 on [0, 1] and continuous

over its compact support, which is a subset of [0, 3/2].

Assumption P. The set P of admissible order p is dyadic with minimal and maximal elements p and p

and cardinal Q+ 1,

P =
{
p, 2× p, . . . , 2Q × p

}
where p = 2Q × p.

The minimal p may depend upon the sample size but does not necessarily diverge. The maximal p of P
diverge with p = o(n1/3) and p = o(p).

10See Le Cam and Yang (2000) for the notion of asymptotic statistical equivalence between two models. At this stage, it

should be emphasized that this equivalence result gives the implicit existence of a test that satisfies Definition 1-(i), but does

not give an explicit adaptive rate-optimal test.
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Assumption R. The sequence of processes {u(n)
t , t ≥ 1} in C(Ln,vn) is 8th order stationary with absolutely

summable cumulants Cum
(
u

(n)
t1 , . . . , u

(n)
tq

)
= κ(n)(t1, . . . , tq) satisfying

+∞∑
t2,...,tq=−∞

∣∣∣κ(n) (0, t2, . . . , tq)
∣∣∣ ≤ C1

(1 + Ln)

 ∞∑
j=0

v−2
j,n

−1/2

R
(n)
0


q/2

, q = 3, . . . , 8.

Assumption M. The estimator θ̂, the parametric model, and the sequence of processes {u(n)
t , t ≥ 1} in

C(Ln,vn) are such that

(i) there is a θ = θn in Rp such that
√
n(θ̂ − θn) = OP(1).

(ii) The estimated residuals admit a second order expansion

ût = u
(n)
t + (θ̂ − θ)u(1,n)

t + ‖θ̂ − θ‖2u(2,n)
t

with E‖u(1,n)
t ‖ ≤ C2, E|u(2,n)

t | ≤ C3 and

∞∑
j=−∞

∥∥∥E [u(n)
t−ju

(1,n)
t

]∥∥∥ ≤ C4 , sup
j∈Z,n∈N

E

∥∥∥∥∥ 1
n

n∑
t=1

(
u

(n)
t−ju

(1,n)
t − E[u(n)

t−ju
(1,n)
t ]

)∥∥∥∥∥
2

≤ C5

n
.

The weak Kernel Assumption K is typical of the minimax approach which derives testing rates through

lower bounds as (2.8), see for instance Ingster (1993). Assumption P is similar to Spokoiny and Horowitz

(2001) who similarly consider dyadic bandwidths. On a theoretical ground, this dyadic restriction is helpful

to prove that p̂ = p asymptotically, so that the choice (2.7) of critical values gives an asymptotic level of α, see

Theorem 1 below. On a more practical ground, using dyadic p gives a parsimonious P with O(lnn) elements

since p = o(n1/3). This is important to increase the probability that p̂ = p, so that critical values computed

from Ŝp can produce a level closer to the desired size. Although Assumption P allows for a diverging p, our

results generally favor a finite given p.

Assumption R extends (2.4) to higher-order cumulants, see Brillinger (2001) for a definition of cumu-

lants. It is automatically satisfied by Gaussian processes since their cumulants of order larger than 2 vanish.

Assumption M-(i) is standard and can be derived from regularity assumptions on the parametric model gen-

erating the residuals ut(θ). Assumption M-(ii) is derived from the properties of linear models as Yt = Xtθ+ut

used in the proof of Hong (1996). It can be easily checked for nonlinear models and variables satisfying some

mixing conditions. Note that Assumption M becomes irrelevant if the ut’s are directly observed.

3.2. Asymptotic level of the test. The heuristic presentation of the test (2.6) has highlighted that the

penalty term γn should satisfy contradictory requirements under the null and the alternative: achieving an

asymptotic level equal to α suggests a large γn whereas detection of small alternatives argues for a small

γn as seen from the expression (2.12) of the candidate adaptive detection rate. The next theorem proposes

via (3.1) a minimal divergence rate for γn ensuring that the test has asymptotic level α. In the statement

of this condition (3.1), log2(p) = ln(p)/ ln(2) is the base 2 logarithm of p so that the number of elements

in P \ {p} is Q = log2(p/p). As a consequence of (3.1) and Assumption P, γn can diverge with the order

(ln lnn)1/2, which is surprisingly low in view of the order lnn of the penalty sequence in the BIC criterion.
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However, such order is such that the candidate adaptive detection rate (2.12) coincides with the optimal

adaptive detection rate (2.15).

Theorem 1. Assume that the ut’s are independent real random variables with Eut = 0, Var(ut) = σ2 and

E|ut|8 ≤ C1(1 + L)4σ8.

Assume that Assumptions K and P hold Then, if the selection sequence {γn, n ≥ 1} satisfies

(3.1) γn ≥
(
2 ln log2(p/p)

)1/2 + ε for some ε > 0,

the selection procedure (2.5) is such that p̂ = p asymptotically under the null, and the test (2.6) is asymp-

totically of level α.

The condition (3.1) slightly improves on Guerre and Lavergne (2005) who use the condition γn ≥
(1 + ε)(2 ln(log2(p/p)))1/2. The intuition behind this order is as follows. The definition (2.5) of p̂ and the

Bonferroni Inequality gives that

P
(
p̂ 6= p

)
= P

(
max

p∈P\{p}

(
Ŝp − Ŝp

R̂2
0

− E(p, p)− γnV (p, p)

)
>
Ŝp − Ŝp

R̂2
0

− E(p, p)− γnV (p, p) = 0

)

= P

(
max

p∈P\{p}

(
(Ŝp − Ŝp)/R̂2

0 − E(p, p)

V (p, p)

)
> γn

)
(3.2)

≤
∑

p∈P\{p}

P

(
(Ŝp − Ŝp)/R̂2

0 − E(p, p)

V (p, p)
> γn

)
.

For diverging p, a candidate approximation for the distribution of the standardized variables of the sum

above is the standard normal. Using such an approximation and the Mill Ratio Inequality suggests that

P(p̂ 6= p) can be bounded with, under Assumption P and (3.1),∑
p∈P\{p}

P (N (0, 1) > γn) ≤ log2(p/p)
exp(−γ2

n/2)√
2πγn

= exp
(
ln log2(p/p)− γ2

n/2− ln(
√

2πγn)
)
,

which asymptotically vanishes if and only if γn ≥ (2 ln log2(p/p))1/2 since p/p diverges under Assumption P.

This gives rise to the condition (3.1), up to a term ε which allows for rigorous use of bounds similar to the

ones above.

In view of the importance of the penalty term γn, an interesting issue deals with potential improvement

of the lower bound (3.1). To discuss this point, assume that p/p is asymptotically larger than a power of n.

Because Theorem 2 establishes that the adaptive detection rate of the test (2.6) is Rn(L,v) that satisfies

(2.13), and since our test cannot beat the optimal adaptive rate (2.15), the smallest possible order (ln lnn)1/2

for γn, compatible with (3.1), cannot be improved. To show that the constant 21/2 cannot be improved can

be conjectured from the exact order (2 ln lnn)1/2 for the maximum of standardized sum of i.i.d. variables

derived in Darling and Erdős (1956). Indeed, taking K(·) = I(· ∈ [0, 1]) and assuming that the covariance

estimators are independent N (0, R4
0/n), as they asymptotically are under independence, gives in (3.2), a

maximum of standardized sums of i.i.d. variables.

Let us now turn to the choice of critical values satisfying (2.7) to complete the study of the test under

the null. In many cases, standard expansion of
√
n(θ̂ − θ) can allow to find critical values ensuring that
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(2.7) holds for a fixed p. The next proposition shows that existence of an expansion for
√
n(θ̂ − θ) can even

be weakened, at the price of a diverging p, allowing to use critical values from the standard normal or the

standardized (χ2(p)− p)/(2p)1/2 Chi square distribution.

Proposition 1. Assume that the ut’s are independent real random variables with Eut = 0, Var(ut) = σ2

and E|ut|8 ≤ C1(1 + L)4σ8.

Assume that Assumption K and P hold. Then the critical value zn(α) satisfies (2.7) provided P(N (0, 1) ≥
zn(α)) goes to α when n grows.

3.3. Adaptive consistency properties of the test. Let us now turn to the detection properties of our

test. Theorem 2 is concerned with adaptive detection of general alternatives while Theorem 3 considers more

specific Pitman local alternatives.

Theorem 2 considers adaptation with respect to the general smoothness classes C(L,v), showing that the

orders of sequence in the truncated alternative set (2.14) that can be detected is given by Rn(L, s) in (2.12)

under some conditions on the minimal and maximal p and p in P. This implies adaptive rate-optimality of

the test (2.6) when s is large enough. Define

(3.3) pn(L,v) = arg min
p

(
n

(
L

vp

)2

+ γnp
1/2

)1/2

.

Theorem 2. Consider a sequence vn = {vj,n, j ∈ N}, n ≥ 1, with, for all n, v0,n = 1, nondecreasing vj,n,

and
∑∞

j=1 v
−2
j,n ≤ V <∞. Let Ln ≤ L <∞ be a sequence of positive real numbers. Assume that Assumptions

K and P hold and that pn(Ln,vn), as defined in (3.3), is in [p, p]

Then the test (2.6) is consistent against any sequence of alternatives {ut,n, t ≥ 1} in C(Ln,vn) satisfying

Assumptions M and R, and such that, for Rn(Ln,vn) as in (2.12), ∞∑
j=1

(Rj,n/R0,n)2

1/2

≥ tRn(Ln,vn) for a large enough t.

The proof of Theorem 2 combines the lower bound (2.11) for pn = 2j � pn(Ln, sn), with a bias variance

bound in the spirit of (2.8). This avoids to study the asymptotic behavior of the selected p̂ under the

alternative. An important ingredient in the construction of the test to ensure consistency is that P must

contain a pn asymptotically proportional to pn(Ln, sn), limiting so the adaptive detection properties of the

test as analyzed now for the specific case of Examples 1 and 2. For these particular smoothness classes, the

condition pn(Ln, sn) in [p, p] can be weakened to pn(Ln, sn) = O(p) and p = O(pn(Ln, sn)).

Example 1 is especially interesting since choosing, as assumed in this discussion, a γn of order (ln lnn)1/2

yields, by comparing (2.13) and (2.15), that the test is adaptive rate-optimal, provided s is restricted in a

suitable way. Indeed, (3.3) yields that pn(L,v) is proportional to

(3.4) pn(L,v) �
(
L2n

γn

) 1
2s+1/2

.

Hence, taking a p asymptotically proportional to n1/3/ lnε(n), for some ε > 0, yields that s must be strictly

smaller than 5/4 so that pn(L, s) ≤ O(p) can hold. The condition p = O(pn(L, s)) is not binding provided
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that p remains finite or diverges as a power of lnn. Hence, with these additional conditions on P, the test is

adaptive rate-optimal with respect to (L, s) in R+
∗ × (5/4,+∞), the restriction s > 5/4 improving on s > 2

assumed in Horowitz and Spokoiny (2001).

In the case of the analytic classes A(L, ν) of Example 2, the adaptive rates Rn(L,v) are asymptotically

proportional to (lnn × ln lnn)1/4/
√
n by (2.13), which is close to the parametric rate 1/o(

√
n). The index

pn(L,v) is asymptotically proportional to lnn, so that the condition p = O(pn(L, s)) argues for choosing a

fixed p.

Let us now turn to detection of Pitman local alternatives. More specifically, Consider a diverging

sequence rn, covariances cj , and consider asymptotically uncorrelated stationary alternatives {u(n)
t , n ≥ 1},

(3.5) Rj,n =
cj
rn

, j ≥ 1 ,

assuming without loss of generality that Var(u(n)
t ) = 1, and that

∑∞
j=1 c

2
j <∞, so that

∞∑
j=1

(R(n)
j /R

(n)
0 )2 =

1
r2n

∞∑
j=1

c2j = O(1/r2n) ,

showing that (3.5) corresponds to alternatives at distance 1/rn from the null. If in addition, there are some

unknown L and s with
∑∞

j=1 j
2sc2j ≤ L2, then

∞∑
j=1

j2s(R(n)
j /R

(n)
0 )2 =

1
r2n

∞∑
j=1

j2sc2j ≤
L2

r2n
,

so that the considered alternatives are in C(L/rn, s).11 Assume that

rn �
(γn

n

)1/2

� (ln lnn)1/4

√
n

.

Then (3.4) gives that pn(L/rn, s) is asymptotically proportional to a constant, and (2.13) yields that

Rn(L/rn, s) �
(γn

n

)1/2
(
nL2

γnr2n

) 1
2(4s+1)

�
(γn

n

)1/2

.

Hence, if p is constant, Theorem 2 shows that the test can consistently detect local alternatives (3.5) con-

verging to the null with the order (ln lnn)1/4/
√
n, which is very close to be parametric, and also slightly

improves on the order (ln lnn)1/2/
√
n from Horowitz and Spokoiny (2001). The next theorem show that our

selection procedure can also detect local alternatives converging to the null with the rate close to 1/o(np)1/2,

which is even better provided that p diverges slowly enough. The alternatives considered below are slightly

more general than (3.5).

Theorem 3. Assume that Assumptions K and P hold. Consider a sequence of stationary 0 mean alternatives

satisfying, for some C > 0
∞∑

j=0

(
R

(n)
j

)2

≤ C and
+∞∑

j2,j3,j4=−∞

∣∣∣κ(n)(0, j2, j3, j4)
∣∣∣ ≤ C .

11Since L/rn goes to 0, these alternatives are asymptotically much more smoother than the ones considered in the Definition

1 of Adaptation, which are in C(L, s). This explains why the optimal adaptive rates (2.15) can be beaten for local Pitman

alternatives (3.5).
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Then, if there is a j∗ = j∗n ≤ p such that (n/p)1/2R
(n)
j∗ diverges, the test (2.6) is consistent.

The proof of Theorem 3 proceeds by applying (2.11) for p = p, which gives since V (p, p) = 0,

Ŝbp
R̂2

0

− E(p)− V (p)z(α) ≥
Ŝp

R̂2
0

− E(p)− V (p)Z(α) .

This bound shows that our test statistic inherits the detection properties of the test based on Ŝp, which can

detect alternatives (3.5) at a distance 1/o((n/p)1/2) from the null provided that cj 6= 0 for some j ≤ p. If

p = o(ln lnn)1/2, this slightly improves from the rate (ln lnn)1/4/n1/2 derived from Theorem 2. In particular,

if p is bounded, the test is consistent against alternatives converging to the null with the parametric rate

1/o(
√
n). Another important difference with Theorem 2 is that the conditions of Theorem 3 allows for long

range dependence. Indeed, the covariance cj ’s in (3.5) can decrease with the rate O(j−1+2d), d in (−1/2, 1/2),

which is typical of long range dependence.

4. Simulation experiments

5. Concluding remarks

This paper has developed adaptive testing for absence of serial correlation. The adaptive approach can

be viewed as a remedy to the fact that testing for such a null is a ill-posed problem, an issue that arises in

many infinite dimensional inference problem as illustrated in Pötscher (2002). The proposed test is based on

a new selection procedure which modifies standard selection criteria as AIC or BIC. Under the alternative,

the selection procedures produces a test statistic that mimics an optimal bias variance trade off specific to

testing. Compared the maximum approach proposed in Fan (1996) and Horowitz and Spokoiny (2001) in

the context of regression specification, the new selection procedure allows to use simple critical values based

on the Normal or Chi square distributions, avoiding so to rely on the Bootstrap.

Under the alternative, the adaptive test is adaptive rate-optimal and is consistent against alternatives

with covariance satisfying Rj = O(j−s) for some unknown s and at a distance ((ln lnn)1/2/n)2s/(4s+1)

from the null of no correlation. Since the unknown smoothness parameter s can be taken arbitrarily large,

such a rate can be made in principle close to (ln lnn)1/4/n1/2, giving some practical contents to the claim

saying that nonparametric tests can approach consistency against alternatives going to the null with a

rate close to be parametric. When the covariance decreases with an exponential rate as in the important

case of ARMA processes, the adaptive consistency rate is a better (lnn × ln lnn)1/4/n1/2. The test also

achieves consistency against some more constrained local Pitman alternatives converging to the null with

a parametric rate 1/o(
√
n). This improves on the rate (ln lnn)1/2/

√
n achieved in Horowitz and Spokoiny

(2001) for specification of a regression models. Such findings illustrate how the adaptive approach can bridge

consistency against alternatives converging to the null in various ways.

6. Proof section

The following propositions are the main intermediary tools to establish our results.

Proposition 2. Assume that the sequence {ut,n, t ≥ 1} is in C(Ln,vn), with Ln ≤ C and
∑∞

j=1 v
−2
j,n ≤ C.

Assume that Assumptions K, M, P and R hold.
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Then

max
p∈P\{p}

|Ŝp − S̃p|
R2

0,nV (p, p)
= OP

p−1 +
n

p2

∞∑
j=1

(Rj,n/R0,n)2

1/2

and, for any diverging p = O(n1/2),

(Ŝp − S̃p)/R2
0,n = OP

1 +
n

p

∞∑
j=1

(Rj,n/R0,n)2

1/2

.

Proposition 3. Assume that the ut’s are independent real random variables with Eut = 0, Var(ut) = σ2

and E|ut|8 ≤ C1(1 + L)4σ8. Assume that Assumptions K and P hold.

Then, for any ε > 0,

lim
n→∞

P

(
max

p∈P\{p}

(Ŝp − Ŝp)/R̂2
0 − E(p, p)

V (p, p)
≥
(
2 ln log2(p/p)

)1/2 + ε

)
= 0 .

Proposition 4. Assume that the ut’s are independent real random variables with Eut = 0, Var(ut) = σ2

and E|ut|8 ≤ C1(1 + L)4σ8. Let p = pn = o(n1/3) be any sequence that diverges with the sample size. Then,

under Assumption K,
(
S̃p/σ

4 − E(p)
)
/V (p) converges in distribution to a standard normal.

Proposition 5. Assume that the sequence {ut,n, t ≥ 1} is in C(Ln,vn), with
∑∞

j=1 v
−2
j,n ≤ C, and satisfies

Assumption R. Assume that Assumption K holds. Then there is a constant C > 0 such that, for any

p = o(n), we have for n large enough,

ES̃p −R2
0,n

n−1∑
j=1

(
1− j

n

)
K2

(
j

p

)
≥ C

n
 ∞∑

j=1

R2
j,n −

(
LnR0,n

vp,n

)2
− (1 + Ln)2R2

0,n

 .

Proposition 6. Assume that the sequence {ut,n, t ≥ 1} is in C(Ln,vn), with
∑∞

j=1 v
−2
j,n ≤ C, and satisfies

Assumption R. Assume that Assumption K holds. Then there is a constant C > 0 such that we have for

any p,

Var
(
S̃p

)
≤ C(1 + Ln)2R2

0,n

n ∞∑
j=1

R2
j,n + p

(
1 +

p

n

)
(1 + Ln)2R2

0,n

 .

Proposition 2 deals with the impact of the estimation errors θ̂−θ, both under the null and the alternative.

Its proof is given in Appendix A. Propositions 3 and 4 are used in the proof of Theorem 1 while Propositions

5 and 6 intervene in the proof of Theorems 2 and 3. These results are proved in Appendices B and C. The

next lemma deal with the order of the E(p), V (p), E(p, p) and V (p, p) introduced after (2.6) and (2.5).

Lemma 1. Assume Assumption K holds and assume that p/n is smaller than 1/2. Then
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(i) there exists a constant C > 1 such that, for q = 1, 2, for any p in [p, p],

p

C
≤

n−1∑
j=1

(
1− j

n

)q

K2q

(
j

p

)
≤ Cp ,

p

C
≤

n−1∑
j=1

K2q

(
j

p

)
≤ Cp , V (p, p) ≤ Cp ,

and
∣∣E(p, p)

∣∣ ≤ n−1∑
j=1

∣∣∣∣K2

(
j

p

)
−K2

(
j

p

)∣∣∣∣ ≤ Cp1/2V (p, p) .

(ii) Under Assumption P, we have, for n all p in P, V (p, p) ≥ C(p − p)1/2 with V (p, p) ≥ Cp1/2 for

p 6= p in P, and E(p, p) + γnV (p, p) ≥ 0 for all p ∈ P.

Proof of Lemma 1. Observe that the two first bounds of the lemma directly follow from Assumption

K, which gives that I(x ∈ [0, 1])/C ≤ K2q(x) ≤ CI(x ∈ [0, 3/2]), and p ≤ n/2. The third bound then follows

by the Triangular Inequality. To establish the other bounds, set

(6.1) kj(p) = K2

(
j

p

)
−K2

(
j

p

)
, K1n(p) =

n−1∑
j=1

|kj(p)| .

The Cauchy-Schwarz Inequality and p ≤ n/2 give, for any p in [p, p],

∣∣E(p, p)
∣∣ ≤ K1n(p) ≤ p1/2

 p∑
j=1

k2
j (p)

1/2

= (2p)1/2V (p, p) ,

which is the last bound in (i).

For (ii), observe that p ≤ n/2, I(x ∈ [0, 1])/C ≤ K4(x) ≤ CI(x ∈ [0, 3/2]), and the dyadic structure of

P give for p 6= p in P, since p = p2q ≥ 3p/2,

V 2(p, p) ≥ 1
2

∑
1≤j≤3p/2

(
K2

(
j

p

)
−K2

(
j

p

))2

+
1
2

∑
3p/2<j≤p

K4

(
j

p

)
≥ (p− 3p/2)/C ≥ C(p− p) ,

which also holds if p = p. Arguing similarly gives E(p, p) ≥ C(p− p), so that E(p, p) + γnV (p, p) ≥ 0 for all

p in P. 2

Lemma 2. For any stationary 0 mean process {ut, t ≥ 1},

sup
0≤j≤n−1

Var
(
R̃j

)
≤ 1
n

4
∞∑

j=0

R2
j +

∞∑
j2,j1,j3=−∞

|κ (0, j2, j3, j4)|

 .

If {ut, t ≥ 1} is in C(L,v) and satisfies Assumption R, we have

sup
0≤j≤n−1

Var
(
R̃j

)
≤ C

(1 + L)2R2
0

∑∞
j=0 v

−2
j

n
.



18

Proof of Lemma 2. Equation (5.3.21) in Priestley (1981) and the Cauchy-Schwarz Inequality give

Var
(
R̃j

)
=

1
n

n−j−1∑
j1=−n+1

(
1− |j1|+ j

n

)(
R2

j1 +Rj1+jRj1−j + κ (0, j1, j, 0)
)

≤ 2
n

∞∑
j1=−∞

R2
j1 +

1
n

+∞∑
j2,j3,j4=−∞

|κ (0, j2, j3, j4)| .

This gives the first bound of the lemma. Assumption R and (2.4) yield that,

2
∞∑

j=−∞
R2

j +
1
n

+∞∑
j2,j3,j4=−∞

|κ (0, j2, j3, j4)| ≤ 2

 ∞∑
j=−∞

|Rj |

2

+ C1(1 + L)2R2
0

∞∑
j=0

v−2
j

≤ (4 + C1)(1 + L)2R2
0

∞∑
j=0

v−2
j .2

6.1. Proof of Theorem 1. We first show that limn→∞ P(p̂ 6= p) = 0. Since
(
Ŝp − Ŝp

)
/R̂2

0 − E(p, p) −
γnV (p, p) vanishes when p = p, (2.5) and (3.1) gives that

P(p̂ 6= p) ≤ P
((
Ŝp − Ŝp

)
/R̂2

0 − E(p, p)− γnV (p, p) ≥ 0 for all p in P \ {p}
)

= P

(
max

p∈P\{p}

Ŝp − Ŝp − R̂2
0E(p, p)

V (p, p)
≥ γnR̂

2
0

)

≤ P

 max
p∈P\{p}

(
Ŝp − Ŝp

)
/R̂2

0 − E(p, p)

V (p, p)
≥
(
2 ln log2(p/p)

)1/2 + ε

 .

Hence Proposition 3 gives that limn→∞ P(p̂ 6= p) = 0, which gives the first part of the Theorem. This gives

that Ŝbp = Ŝp asymptotically, so that (2.7) implies that the test has asymptotic level α. 2

6.2. Proof of Proposition 1. Proposition (2), (B.13) and Lemma (1) give, under Assumption P,

Ŝp/R̂
2
0 − E(p)

V (p)
=

Ŝp − R̂2
0E(p)

R̂2
0V (p)

=
S̃p +OP(p−1/2)− σ4E(p) +OP

(
E(p)

)
(σ4 + oP(1))V (p)

= (1 + oP(1))
S̃p/σ

4 − E(p)
V (p)

+ oP(1) .

Hence Proposition 4 gives that (Ŝp/R̂
2
0−E(p))/V (p)− z(α) converges in distribution to N (0, 1)− zα, where

zα is the 1− α quantile of the standard normal. This gives the desired result. 2

6.3. Proof of Theorem 2. Observe first that the test statistics are unchanged when the ût,n’s are rescaled

as ût,n/R
1/2
0,n , so that it can be assumed without loss of generality that R0,n = 1. We now introduce

a suitable dyadic index pn. Let pn(L,v) be as in (3.3) and consider the integer number qn such that

2qn−1 < pn(L,v) ≤ 2qn . Since pn(L,v) is in [p, p], pn = 2qn is in P. It then follows from the definition (2.12)

of Rn(L,v) that

(6.2)
(

Ln

vpn,n

)2

≤ R2
n(Ln,vn) , γn

p
1/2
n

n
≤
√

2R2
n(Ln,vn) ,
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implying in particular that nR2
n(Ln,vn) diverges as γn does. This implies more specifically that

(
n
∑n

j=1R
2
j,n

)1/2

=

o
(
n
∑n

j=1R
2
j,n

)
for those alternatives with n

∑n
j=1R

2
j,nt

2R2
n(Ln,vn) as considered in the Theorem.

Recall that T rejects H0 if Ŝbp/R̂2
0 − E(p)− V (p)z(α) ≥ 0 and that (2.11) gives

(6.3)
Ŝbp
R̂2

0

≥ Ŝp

R̂2
0

− E(p, p)− γnV (p, p) =
Ŝp

R̂2
0

− E(p) + E(p)− γnV (p, p), for all p in P.

Take p = pn in the equation above. Since γnV (pn, p) = O(γnp
1/2
n ) by Lemma 1, this gives,

Ŝbp
R̂2

0

− E(p)− V (p)z(α) ≥ Ŝpn

R̂2
0

− E(pn)− Cγnp
1/2
n .

Now Proposition 2, (6.2), the Markov Inequality together with Propositions 5 and 6 give

Ŝpn
= S̃pn

+OP(p1/2
n ) +OP

n ∞∑
j=1

R2
j,n

1/2

= ES̃pn
+OP

(
Var1/2

(
S̃pn

))
+ oP

(
nR2

n(Ln,vn)
)

+ oP

n ∞∑
j=1

R2
j,n


≥ E(pn) + C

n ∞∑
j=1

R2
j,n − n

(
Ln

vpn,n

)2

− L2
n

+OP

n ∞∑
j=1

R2
j,n

1/2

+ oP
(
nR2

n(Ln,vn)
)

≥ E(pn) + C

(1 + oP(1))n
∞∑

j=1

R2
j,n − nR2

n(Ln,vn)

+ oP
(
nR2

n(Ln,vn)
)

≥ E(pn) + C(t− 1 + oP(1))nR2
n(Ln,vn) .

Recall that R2
0,n = 1, so that (B.13) yields R̂0 = 1 +OP(n−1/2). Then substituting gives, E(pn) = O(pn) =

O(n1/3) and (6.2),

Ŝbp
R̂2

0

− E(p)− V (p)z(α) ≥ O
(
E(pn)/n1/2

)
+ C(t− 1 + oP(1))nR2

n(Ln,vn)−O
(
γnp

1/2
n

)
= o(1) + C(t− 1 + oP(1))nR2

n(Ln,vn)−O
(
nR2

n(Ln,vn)
)
,

where the lower bound diverges in probability provided t is large enough. This proves the consistency result

stated in the Theorem. 2

6.4. Proof of Theorem 3. Taking p = p in (6.3) gives, using Proposition 2, (B.13) and Lemma 1 give,

since p = o(n1/3) under Assumption P,

Ŝbp
R̂2

0

− E(p)− V (p)z(α) ≥
Ŝp

R̂2
0

− E(p)− V (p)z(α) =
S̃p +OP(1)

σ4 + oP(1)
−O(p)

≥
nR̃2

j∗ +OP(1)
σ4 + oP(1)

−O(p) ,
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where the last inequality follows from the definition of S̃p and j∗ ≤ p. Now, Lemma 2 gives R̃j∗ = Rj +

OP(n−1/2) under the covariance and cumulants summability conditions imposed in the Lemma. Hence

Ŝbp
R̂2

0

− E(p)− V (p)z(α) ≥ p

[(
(n/p)1/2Rj∗ + oP(1)

)2

−OP(1)
]
.

This gives the claimed consistency since (n/p)1/2R∗j diverges. 2
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Appendix A: proof of Proposition 2

In what follows, we abbreviate ut,n, Ln and vn into ut, L and v. We assume without loss of generality that R0 = 1.

Since bR2
j − eR2

j =
� bRj − eRj

�2

+2 eRj

� bRj − eRj

�
, Proposition 2 is a direct consequence of Lemmas A.1 and A.2 below.

Lemma A.1. Assume that Assumptions K, M and P hold, with p = o(n) instead of p = o(n1/3) in Assumption P.

Then

max
p∈P\{p}

����nPn−1
j=1

�
K2(j/p)−K2(j/p)

� � bRj − eRj

�2
����

R2
0,nV (p, p)

= OP

�
p−1/2

�
and, for any diverging p = o(n),

n

n−1X
j=1

K2(j/p)
� bRj − eRj

�2

/R2
0,n = OP(1) .

Lemma A.2. Assume that Assumptions K, M, P and R hold, with p = O(n1/2) instead of p = o(n1/3) in Assumption

P. Then

max
p∈P\{p}

���nPn−1
j=1

�
K2(j/p)−K2(j/p)

� eRj

� bRj − eRj

����
V (p, p)

= OP

 
p−1 +

n

p2

∞X
j=1

R2
j

!1/2

and, for any diverging p = O(n1/2),

n

n−1X
j=1

K2(j/p) eRj

� bRj − eRj

�
= OP

 
1 +

n

p

∞X
j=1

R2
j

!1/2

.

Proof of Lemma A.1. We only give a proof of the first bound, the second being similarly established. Let kj(p)

and K1n(p) be as in (6.1) in Lemma 1. Define et as et = but − ut, so that

(A.1) bRj − eRj =
1

n

nX
t=1

(utet−j + ut−jet) +
1

n

nX
t=1

et−jet ,

recalling that et = 0 if t ≤ 1. It then follows

(A.2)

An(p) =

����� n

V (p, p)

n−1X
j=1

|kj(p)|

 
1

n

nX
t=1

(utet−j + ut−jet)

!2����� , Bn(p) =

����� n

V (p, p)

n−1X
j=1

|kj(p)|

 
1

n

nX
t=1

e2
t

!2����� .
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For the first term, we have

An(p) ≤ 2 (A1n(p) + A2n(p)) , where

A1n(p) =

����� n

V (p, p)

n−1X
j=1

|kj(p)|
�bθ − θ

� 1

n

nX
t=1

utu
(1)
t−j + ut−ju

(1)
t

!2����� ,

A2n(p) =

����� n

V (p, p)




bθ − θ



4

n−1X
j=1

|kj(p)|

 
1

n

nX
t=1

�
utu

(2)
t−j + ut−ju

(2)
t

�!2�����
≤ nK1n(p)

V (p, p)




bθ − θ



4
 

1

n

nX
t=1

u2
t

! 
1

n

nX
t=1

�
u

(2)
t

�2
!

.

Lemma 1-(i), Assumption M and the Markov Inequality then show that maxp∈(p,p] A2n(p) = OP

�
p1/2/n

�
. For

A1n(p), Lemma 1-(ii), Assumptions K and M give,

max
p∈P\{p}

A1n(p) ≤ C
n

p1/2




bθ − θ



2
 

∞X
j=−∞




E hut−ju
(1)
t

i


2

+

O(p)X
j=1






 1

n

nX
t=1

�
utu

(1)
t−j + ut−ju

(1)
t − E

h
utu

(1)
t−j

i
− E

h
ut−ju

(1)
t

i�





2
1A

≤ p−1/2OP

�
1 +

p

n

�
.

Hence

(A.3) max
p∈(p,p]

|An(p)| = p−1/2OP

�
1 +

p

n

�
.

Consider now the term Bn(p) in (A.2). We have, under Assumptions K and M and by Lemma 1,

max
p∈(p,p]

|Bn(p)| ≤ Cnp−1/2



bθ − θ




4
O(p)X
j=1

 
1

n

nX
i=1

�


u(1)
t




2

+



bθ − θ




2 ���u(2)
t

���2�!2

= p−1/2OP

�
p

n

�
.

Substituting this order and (A.3) into (A.2) shows that the first bound of the Lemma is proved. The second bound

is obtained by changing p and p into p in the bounds above. 2

Proof of Lemma A.2. As in Lemma A.1, it is sufficient to prove the more difficult first equality. Let kj(p) and

K1n(p) be as in (6.1) in Lemma 1. We have, recalling that E eRj = Rj = (1− j/n)Rj ,����� n

V (p, p)

n−1X
j=1

kj(p) eRj

� bRj − eRj

������ ≤ Cn(p) + Dn(p) , where(A.4)

Cn(p) =

����� n

V (p, p)

n−1X
j=1

kj(p)(1− j/n)Rj

� bRj − eRj

������ , Dn(p) =

����� n

V (p, p)

n−1X
j=1

kj(p)
� eRj −Rj

�� bRj − eRj

������ .

For the first term, the Cauchy-Schwarz Inequality gives,

Cn(p) ≤ C

V 1/2(p, p)

 
n

∞X
j=1

R2
j

!1/2
0B@n

Pn−1
j=1 |kj(p)|

� bRj − eRj

�2

V (p, p)

1CA
1/2

.

Hence Lemma A.1 and Lemma 1-(ii) yield

(A.5) max
p∈(p,p]

|Cn(p)| = OP

 
n

p2

∞X
j=1

R2
j

!1/2

.
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Consider now the term Dn(p) from (A.4). Observe first that (A.1) gives��� bRj − eRj

��� ≤ 


bθ − θ






E hutu

(1)
t−j + ut−ju

(1)
t

i



+



bθ − θ









 1

n

nX
t=1

�
utu

(1)
t−j + ut−ju

(1)
t − E

h
utu

(1)
t−j + ut−ju

(1)
t

i�




+



bθ − θ




2

����� 1n
nX

t=1

�
utu

(2)
t−j + ut−ju

(2)
t

������
+

1

n

nX
t=1

e2
t .

Then Assumption M-(i) gives that

max
p∈P\{p}

|Dn(p)| ≤ OP(n
−1/2)

�
max

p∈P\{p}
|D1n(p)|+ max

p∈P\{p}
|D2n(p)|

�
+ OP(n

−1) max
p∈P\{p}

|D3n(p)|

+

 
1

n

nX
t=1

e2
t

!
max

p∈P\{p}
|D4n(p)| , where

D1n(p) =
n

V (p, p)

n−1X
j=1

|kj(p)|
��� eRj −Rj

��� 


E hutu
(1)
t−j + ut−ju

(1)
t

i


 ,

D2n(p) =
n

V (p, p)

n−1X
j=1

|kj(p)|
��� eRj −Rj

��� 




 1

n

nX
t=1

�
utu

(1)
t−j + ut−ju

(1)
t − E

h
utu

(1)
t−j + ut−ju

(1)
t

i�




 ,

D3n(p) =
n

V (p, p)

n−1X
j=1

pX
j=1

|kj(p)|
��� eRj −Rj

��� ����� 1n
nX

t=1

�
utu

(2)
t−j + ut−ju

(2)
t

������ ,

D4n(p) =
n

V (p, p)

n−1X
j=1

|kj(p)|
��� eRj −Rj

��� .

This gives, under Assumption K and M-(ii), and by Lemmas 1-(ii) and 2,

E
�

max
p∈P\{p}

|D1n(p)|
�
≤ Cnp−1/2

O(p)X
j=1

E
��� eRj −Rj

��� 


E hutu
(1)
t−j + ut−ju

(1)
t

i



≤ Cnp−1/2

O(p)X
j=1

Var1/2
� eRj

�


E hutu
(1)
t−j + ut−ju

(1)
t

i


 ≤ C(n/p)1/2 ,

E
�

max
p∈P\{p}

|D2n(p)|
�
≤ Cnp−1/2

O(p)X
j=1

E

"��� eRj −Rj

��� 




 1

n

nX
t=1

�
utu

(1)
t−j + ut−ju

(1)
t − E

h
utu

(1)
t−j + ut−ju

(1)
t

i�





#

≤ Cnp−1/2

O(p)X
j=1

Var1/2
� eRj

�
E1/2






 1

n

nX
t=1

�
utu

(1)
t−j + ut−ju

(1)
t − E

h
utu

(1)
t−j + ut−ju

(1)
t

i�





2

≤ Cpp−1/2 ,

E
�

max
p∈P\{p}

|D3n(p)|
�
≤ Cnp−1/2

O(p)X
j=1

E

"��� eRj −Rj

��� ����� 1n
nX

t=1

�
utu

(2)
t−j + ut−ju

(2)
t

������
#

≤ Cnp−1/2

O(p)X
j=1

Var1/2
� eRj

�
E1/2

����� 1n
nX

t=1

�
utu

(2)
t−j + ut−ju

(2)
t

������
2

≤ Cp(n/p)1/2 ,

E
�

max
p∈P\{p}

|D4n(p)|
�
≤ Cnp−1/2

O(p)X
j=1

E
��� eRj −Rj

��� ≤ Cnp−1/2

O(p)X
j=1

Var1/2
� eRj

�
≤ Cp(n/p)1/2 .
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Then the Markov Inequality and substituting in the bound above for maxp∈(P\{p} |Dn(p)| give, since
Pn

t=1 e2
t /n =

OP(1/n) under Assumption M,

max
p∈P\{p}

|Dn(p)| = p−1/2OP

�
1 +

p

n1/2

�
= OP

�
p−1/2

�
.

Substituting this last equality and (A.5) in (A.4) shows that the Lemma is proved. 2

Appendix B: proof of Propositions 3 and 4

Proposition 4 follows from Assumption K and the two lemmas established in this Appendix. The proof of Proposition

3 is postponed to the end of this Appendix.

Lemma B.1. Assume that the ut’s are independent real random variables with Eut = 0, Var(ut) = σ2 and E|ut|8 ≤
C1L

4σ8. Let k1, . . . kp be some real numbers and Z1, . . . , Zp be p independent N (0, 1) variables. Then there exists a

constant C such that, for any three-times continuously differentiable function I(·) from R to R, any 1 ≤ p < n and

any k1, . . . , kp with
Pp

j=1 |kj | 6= 0,�������E
264I
0B@n

Pp
j=1 kj

� eR2
j − σ4(1− j/n)

�
σ4
�
2
Pp

j=1 k2
j (1− j/n)2

�1/2

1CA
375− E

264I
0B@Pp

j=1 kj(1− j/n)(Z2
j − 1)�

2
Pp

j=1 k2
j (1− j/n)2

�1/2

1CA
375
�������

≤ C

"
‖I‖3,∞

n1/2

�
LK1n

K2n
+ 1

�3

+ ‖I‖2,∞

 
sup

j∈[1,p]

|kj |+ 1

!�
LK1n

K2n

�2 � p

n

�1/2
#

,

where ‖I‖`,∞ = supj=0,···` supx∈R

���I(j)(x)
��� and

K1n =

pX
j=1

|kj | , K2n =

 
2

pX
j=1

k2
j (1− j/n)2

!1/2

.

Lemma B.2. Let k1, . . . kp be some real numbers and Z1, . . . , Zp be p independent N (0, 1) variables. Then there exists

a constant C such that, for any three-times continuously differentiable function I(·) from R to R, any 1 ≤ p < n and

any k1, . . . , kp with
Pp

j=1 |kj | 6= 0,�������E
264I
0B@Pp

j=1 kj(1− j/n)(Z2
j − 1)�

2
Pp

j=1 k2
j (1− j/n)2

�1/2

1CA
375− E [I (N (0, 1))]

������� ≤ C ‖I‖3,∞ sup
j∈[1,p]

|kj |
K1n

K3
2n

.

Proof of Lemma B.1. Set ut = 0 for t ≤ 0. Let gj,t be independent N (0, 1) variables if t − j > 0, gj,t = 0 if

t− j ≤ 0. Let ηt and eηt be the Cp vectors

ηt =
1

σ2

h
k

1/2
1 utut−1, . . . , k

1/2
p utut−p

i′
, eηt =

h
k

1/2
1 g1,t, . . . , k

1/2
n gp,t

i′
,

which are such that

Eηt = Eeηt = 0 , Var(ηt) = Var(eηt) .
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For t in [1, n], x in [0, 1], and η in Cp, define

Vt(η) =

t−1X
i=1

ηi + η +

nX
i=t+1

eηi , Vt(x; η) = Vt(xη) ,

Qt(η) =
V ′

t (η)Vt(η)/n−
Pp

j=1 kj(1− j/n)

K2n
, Qt(x; η) = Qt(xη)

It(η) = I (Qt(η)) , It(x; η) = It(xη) .

In the summation signs above, we set
Pt−1

i=1 = 0 if t− 1 < 1 and
Pn

i=t+1 = 0 if t + 1 > n. By definition of the ηt’s,

we have

n
Pp

j=1 kj

� eR2
j − σ4(1− j/n)

�
σ4
�
2
Pp

j=1 k2
j (1− j/n)2

�1/2
= Qn(ηn) .

Since the coordinates Vj,1(eη1) of V1(eη1) are independent k
1/2
j N (0, 1− j/n) by definition of the gj,t’s, Q1(eη1) has the

same distribution than Pp
j=1 kj(1− j/n)(Z2

j − 1)�
2
Pp

j=1 k2
j (1− j/n)2

�1/2
.

Observe also that It+1(eηt) = It(ηt). This gives that the bound in Lemma B.1 is a bound for

|E (In(ηn)− I1(eη1))| = |E (In(ηn)− In(eηn) + In−1(ηn)− In−1(eηn) + · · ·+ I2(η2)− I2(eη2) + I1(η1)− I1(eη1))|

≤
nX

t=1

|E (It(ηt)− It(eηt))| .(B.1)

Set I(j)
t (x; η) = djIt(x; η)/djx. Since It(η) = It(1; η) and It(0; η) = It(0), a third-order Taylor expansion with

integral remainder gives

It(η) = It(0) + I(1)
t (0; η) +

I(2)
t (0; η)

2
+

Z 1

0

(1− x)2

2
I(3)

t (x; η)dx ,

so that

|E (It(ηt)− It(eηt))| =
���E�I(1)

t (0; ηt)− I(1)
t (0; eηt)

�
+

1

2
E
�
I(2)

t (0; ηt)− I(2)
t (0; eηt)

�
+

Z 1

0

(1− x)2

2
E
�
I(3)

t (x; ηt)− I(3)
t (x; eηt)

�
dx

���� .(B.2)

In this expansion, the derivatives are

(B.3)

8>><>>:
I(1)

t (0; η) = 2
nK2n

η′Vt(0)I(1)(Qt(0))

I(2)
t (0; η) = 2

nK2n
‖η‖2I(1)(Qt(0)) + 4

(nK2n)2
(η′Vt(0))

2 I(2)(Qt(0))

I(3)
t (x; η) = 10

(nK2n)2
‖η‖2η′Vt(x; η)I(2)(Qt(x; η)) + 4

(nK2n)3
(η′Vt(x; η))

3 I(3)(Qt(x; η))

.

Let Ft be the sigma field generated by η1, . . . ηt−1 and eηt+1, . . . , eηn. Observe that Vt(0) and Qt(0) are Ft-measurable

while ηt and eηt are centered given Ft. This gives for the first term of the Taylor expansion (B.2)

E
�
I(1)

t (0; ηt)− I(1)
t (0; eηt)

�
= E

�
2

nK2n
V ′

t (0)I(1)(Qt(0))E [ηt − eηt |Ft ]

�
= 0 .

Hence substituting the remaining terms of the Taylor expansion (B.2) in (B.1) gives

|E (In(ηn)− I1(eη1))| ≤ 1

2

nX
i=1

���E�I(2)
t (0; ηt)− I(2)

t (0; eηt)
����(B.4)

+
1

2

nX
i=1

Z 1

0

����EI(3)
t (x; ηt)

���+ ���EI(3)
t (x; eηt)

���� dx .(B.5)
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The study of these two items is done in the next three steps.

Step 1. A moment bound. We prove here that, for any 1 ≤ a + b ≤ 8 and any x in 0, 1,

(B.6) max
�

E
h
‖ηt‖a ‖Vt(ηt; x)‖b

i
, E
h
‖eηt‖a ‖Vt(eηt; x)‖b

i�
≤ C(LK1n)(a+b)/2nb/2 .

We prove the bound for E
h
‖ηt‖a ‖Vt(ηt; x)‖b

i
, the other moment bound being simpler to prove due to normality.

The Hölder inequality gives

E
h
‖ηt‖a ‖Vt(ηt; x)‖b

i
≤ E

a
a+b

h
‖ηt‖a+b

i
E

b
a+b

h
‖Vt(ηt; x)‖a+b

i
so that it is sufficient to prove that

(B.7) E
a

a+b

h
‖ηt‖a+b

i
≤ C(LK1n)a/2 , E

b
a+b

h
‖Vt(ηt; x)‖a+b

i
≤ C(LK1nn)b/2 .

For the first bound, the definition of ηt and the Minkowski Inequality give

E
a

a+b

h
‖ηt‖a+b

i
=

0@E
2

a+b

24 pX
j=1

|kj |
�utut−j

σ2

�2
! a+b

2
351A

a
2

≤

 
pX

j=1

|kj |E
2

a+b

��utut−j

σ2

�2
� a+b

2
! a

2

≤ C

 
L

pX
j=1

|kj |

! a
2

= C(LK1n)a/2 ,

since a+ b ≤ 8. For the second bound in (B.7), observe first that the definition of Vt(x; ηt), the Minkowski inequality

and the bound above give

E
b

a+b

h
‖Vt(ηt; x)‖a+b

i
≤ E

b
a+b

24





t−1X
i=1

ηi







a+b
35+ C(LK1n)b/2 + E

b
a+b

24





nX

i=t+1

eηi







a+b
35 .

We now bound Eb/(a+b)
h

Pt−1

i=1 ηi



a+b
i
, the bound of the other item being simpler due to normality. Observe that,

for each j ≥ 1, the {
Pt

i=1 ui−jui, t ∈ N} are martingales. Hence the definition of ηt, Minkowski Inequality and the

Burkolder Inequality (see Theorem 1, p.396 in Chow and Teicher (1988)) give

E
b

a+b

24





t−1X
i=1

ηi







a+b
35 =

0B@E
2

a+b

0@ pX
j=1

|kj |

 
1

σ2

t−1X
i=1

ui−jui

!2
1A

a+b
2
1CA

b
2

≤

0@ pX
j=1

|kj |E
2

a+b

����� 1

σ2

t−1X
i=1

ui−jui

�����
a+b
1A b

2

=

0@ pX
j=1

|kj |

0@E
1

a+b

����� 1

σ2

t−1X
i=1

ui−jui

�����
a+b
1A21A

b
2

≤

0B@ pX
j=1

|kj |

0B@E
1

a+b

������
 

t−1X
i=1

�ui−jui

σ2

�2
! 1

2
������
a+b
1CA

21CA
b
2

=

0@ pX
j=1

|kj |E
2

a+b

�����
t−1X
i=1

�ui−jui

σ2

�2

�����
a+b
2
1A

b
2

≤ C

 
L

pX
j=1

|kj |(t− 1)

! b
2

≤ C(LK1nn)b/2 .

This completes the proof of (B.7) so that (B.6) holds.
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Step 2. The third-order term (B.5). Observe that the Cauchy-Schwarz Inequality, (B.6) and the expression of

the third-order derivative in (B.3) give���EI(3)
t (x; ηt)

��� ≤ ‖I‖3,∞

�
10

(nK2n)2
E
��‖ηt‖2η′tVt(x; η)

��+ 4

(nK2n)3
E
��η′tVt(x; η)

��3�
≤ ‖I‖3,∞

�
10

(nK2n)2
E
�
‖ηt‖3‖Vt(x; η)‖

�
+

4

(nK2n)3
E
�
‖η′3t ‖Vt(x; η)‖3��

≤ C ‖I‖3,∞

�
n1/2(LK1n)2

(nK2n)2
+

n3/2(LK1n)3

(nK2n)3

�
.

Since
���EI(3)

t (x; eηt)
��� can be similarly bounded, we have for (B.5)

1

2

nX
i=1

Z 1

0

����EI(3)
t (x; ηt)

���+ ���EI(3)
t (x; eηt)

���� dx ≤ C ‖I‖3,∞

�
n3/2(LK1n)2

(nK2n)2
+

n5/2(LK1n)3

(nK2n)3

�

=
C ‖I‖3,∞

n1/2

 �
LK1n

K2n

�2

+

�
LK1n

K2n

�3
!
≤

C ‖I‖3,∞

n1/2

�
LK1n

K2n
+ 1

�3

.

Step 3. The second-order term (B.4). (B.3) gives

���E�I(2)
t (0; ηt)− I(2)

t (0; eηt)
����

≤ 2

nK2n

���E h�‖ηt‖2 − ‖eηt‖2� I(1)(Qt(0))
i���+ 4

(nK2n)2

���E h��η′tVt(0)
�2 − �eη′tVt(0)

�2� I(2)(Qt(0))
i��� .(B.8)

The study of the two items in (B.8) requires some additional notations. Define

V t =

t−p−1X
i=1

ηi +

nX
i=t+1

eηi = Vt(0)−
t−1X

i=t−p

ηi ,

Qt =
V
′
tV t/n−

Pp
j=1 kj(1− j/n)

K2n
= Qt(0) +




Pt−1
i=t−p ηi




2

nK2n
− 2

V ′
t (0)

Pt−1
i=t−p ηi

nK2n
.

The rationale for introducing such quantities is that V t and Qt depend only on u1, . . . ut−p−1 and are therefore

independent of ηt.

Consider the first item in (B.8). Since V t and Qt are independent of (eηt, ηt) and because ηt and eηt are centered

and have the same variance matrix, we have

E
h
‖ηt‖2I(1)(Qt)

i
= E

h
‖eηt‖2I(1)(Qt)

i
.

It then follows that���E h�‖ηt‖2 − ‖eηt‖2� I(1)(Qt(0))
i��� ≤ E

���‖ηt‖2
�
I(1)(Qt(0))− I(1)(Qt)

����+ E
���‖eηt‖2

�
I(1)(Qt(0))− I(1)(Qt)

���� .

It is sufficient to bound the first item of the RHS above. The Taylor and Hölder Inequalities, the expression of

Qt(0)−Qt and the bound (B.6) give

E
���‖ηt‖2

�
I(1)(Qt(0))− I(1)(Qt)

���� ≤ ‖I‖2,∞ E

24 ‖ηt‖2

nK2n

0@





t−1X

i=t−p

ηi







2

+ V ′
t (0)

t−1X
i=t−p

ηi

1A35
≤

‖I‖2,∞

nK2n

0@E1/2[‖ηt‖4]E1/2

24





t−1X

i=t−p

ηi







4
35+ E1/2[‖ηt‖4‖Vt(0)‖2]E1/2

24





t−1X

i=t−p

ηi







2
351A

≤ C
‖I‖2,∞

nK2n
L2K2

1n(p + (np)1/2) ≤ CL2 ‖I‖2,∞
K1n

K2n
K1n

� p

n

�1/2

.
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It follows that, for the first item in (B.8),

(B.9)
2

nK2n

���E h�‖ηt‖2 − ‖eηt‖2� I(1)(Qt(0))
i��� ≤ C

‖I‖2,∞

n

�
L

K1n

K2n

�2 � p

n

�1/2

.

Let us now turn to the second item in (B.8). Recall that Ft is the sigma field generated by η1, . . . , ηt−1 andeηt+1, . . . , eηn so that Vt(0), V t and Qt are Ft measurable. Define

N2
k (Vt(0)) = E

h�
η′tVt(0)

�2 |Ft

i
=

pX
j=1

kjV
2

jt(0) .

This gives���E h��η′tVt(0)
�2 − �eη′tVt(0)

�2� I(2)(Qt(0))
i��� ≤ ���E hE h�η′tV t

�2 − �eη′tVt(0)
�2 |Ft

i
I(2)(Qt(0))

i���
+ ‖I|2,∞ E

������2 �η′tV t

� 
η′t

t−1X
i=t−p

ηi

!
+

 
η′t

t−1X
i=t−p

ηi

!2
������

≤ ‖I|2,∞

0@E
��N2

k (V t)−N2
k (Vt(0))

��+ 2E1/2 �‖ηt‖4‖V t‖2�E1/2







t−1X

i=t−p

ηi







2

+ E1/2‖ηt‖4E1/2







t−1X

i=t−p

ηi







4
1A .

The bound (B.6) gives

E1/2
�
‖ηt‖4‖V t‖2

�
E1/2




Pt−1
i=t−p ηi




2

+ E1/2‖ηt‖4E1/2



Pt−1

i=t−p ηi




4

≤ C(LK1n)2
�
(np)1/2 + p

�
,

E
��N2

k (V t)−N2
k (Vt(0))

�� ≤ supj∈[1,p] |kj |
�

2E1/2‖Vt(0)‖2E1/2



Pt−1

i=t−p ηi




2

+ E



Pt−1

i=t−p ηi




2
�

≤ C supj∈[1,p] |kj |(LK1n)2
�
(np)1/2 + p

�
.

This gives, for the second item in (B.8)

(B.10)
4

(nK2n)2

���E h��η′tVt(0)
�2 − �eη′tVt(0)

�2� I(2)(Qt(0))
i��� ≤ C ‖I‖2,∞

supj∈[1,p] |kj |+ 1

n

�
LK1n

K2n

�2
p1/2

n
.

Substituting (B.9) and (B.10) in (B.8) gives that (B.4) admits the bound

1

2

nX
i=1

���E�I(2)
t (0; ηt)− I(2)

t (0; eηt)
���� ≤ C ‖I‖2,∞

 
sup

j∈[1,p]

|kj |+ 1

!�
LK1n

K2n

�2 � p

n

�1/2

.

Substituting in (B.4) and (B.5) the bounds of Step 2 and Step 3 ends the proof of Lemma B.1. 2

Proof of Lemma B.2. Pollard (2002, Inequality 18, p. 179) yields that�������E
264I
0B@Pp

j=1 kj(1− j/n)(Z2
j − 1)�

2
Pp

j=1 k2
j (1− j/n)2

�1/2

1CA
375− E [I (N (0, 1))]

������� ≤ C
‖I‖3,∞

K3
2n

pX
j=1

E
��kj(1− j/n)(Z2

j − 1)
��3

≤ C ‖I‖3,∞ sup
j∈[1,p]

|kj |
K1n

K3
2n

.2

Proof of Proposition 3. We first derive a suitable deviation inequality. Let kj(p) and K1n(p) be as in (6.1). Recall

that log2(p/p) = Q is the number of elements in P \ {p}. Note that there is a three times continuously differentiable

function, with bounded third derivative, such that

I
�
x ≥ (2 ln Q)1/2 + ε/2

�
≤ I

�
x− (2 ln Q)1/2

�
≤ I

�
x ≥ (2 ln Q)1/2

�
.
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Then Lemmas B.1 and B.2, the Mill Ratio inequality, Lemma 1, Assumptions K and P and (3.1) give, for all p in

P \ {p}

P

 eSp − eSp − σ4E(p, p)

σ4V (p, p)
≥ (2 ln Q)1/2 + ε/2

!

≤ P
�
N (0, 1) ≥ (2 ln Q)1/2

�
+

C

n1/2

  
LK1n(p)

V (p, p)

!3

+

 
LK1n(p)

V (p, p)

!2

p

!
+ C

K1n(p)

V 3(p, p)

≤
exp

�
−
�
(2 ln Q)1/2

�2

/2

�
√

2π(2 ln Q)1/2
+

C

n1/2

��
Lp1/2

�3

+
�
Lp1/2

�2

p

�
+ Cp−1/2

≤ 1√
2π(2 ln Q)1/2Q

+ CL3

 �
p3

n

�1/2

+
1

p1/2

!
.(B.11)

Let us now return to the proof of Proposition 3. We will treat separately the cases of a diverging p and of a

bounded one. Consider first a diverging p
0
≥ p in P, so that p = p

0
2Q0 with Q0 ≤ Q. We have

P

0@ max
p∈P\{p}

�bSp − bSp

�
/ bR2

0 − E(p, p)

V (p, p)
≥ (2 ln Q)1/2 + ε

1A
≤ P

0@ max
p∈P,p>p

0

�bSp − bSp

�
/ bR2

0 − E(p, p)

V (p, p)
≥ (2 ln Q)1/2 + ε

1A
+P

0@ max
p∈P,p<p≤p

0

�bSp − bSp

�
/ bR2

0 − E(p, p)

V (p, p)
≥ (2 ln Q)1/2 + ε

1A .(B.12)

Observe also that Lemma 2 and Proposition 2 give

(B.13) bR2
0 = σ2 + OP(n

−1/2) .

We first deal, in Equation (B.12), with the p’s greater than p
0
. Lemma 1, Proposition 2, (B.13) and Assumption

P give

max
p∈P,p>p

0

�bSp − bSp

�
− E(p, p) bR2

0

V (p, p)
≤ max

p∈P,p>p
0

�eSp − eSp

�
− E(p, p)σ4

V (p, p)
+ max

p∈P,p>p
0

������
�bSp − bSp

�
−
�eSp − eSp

�
V (p, p)

������
+
���σ4 − bR2

0

��� max
p∈P,p>p

0

E(p, p)

V (p, p)

≤ max
p∈P,p>p

0

�eSp − eSp

�
− E(p, p)σ4

V (p, p)
+ OP

 
p−1/2

0
+

�
p

n

�1/2
!

= max
p∈P,p>p

0

�eSp − eSp

�
− E(p, p)σ4

V (p, p)
+ oP(1) .
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Hence the bound above and (B.13) give, since ln Q = O(ln n) under Assumption P,

P

0@ max
p∈P,p>p

0

�bSp − bSp

�
/ bR2

0 − E(p, p)

V (p, p)
≥ (2 ln Q)1/2 + ε

1A
= P

0@ max
p∈P,p>p

0

�bSp − bSp

�
− E(p, p) bR2

0

V (p, p)
≥
�
(2 ln Q)1/2 + ε

� bR2
0

1A
≤ P

0@ max
p∈P,p>p

0

�eSp − eSp

�
− E(p, p)σ4

V (p, p)
+ oP(1) ≥

�
(2 ln Q)1/2 + ε

�
σ4 + OP

�
ln n

n

�1/2
1A

≤ P

0@ max
p∈P,p>p

0

�eSp − eSp

�
/σ4 − E(p, p)

V (p, p)
≥ (2 ln Q)1/2 + ε/2

1A+ o(1) .

Observe now that (B.11) gives

P

0@ max
p∈P,p≥p

0

�eSp − eSp

�
/σ4 − E(p, p)

V (p, p)
≥ (2 ln Q)1/2 + ε/2

1A ≤
X

p∈P,p≥p
0

P

 eSp − eSp − σ4E(p, p)

σ4V (p, p)
≥ (2 ln Q)1/2 + ε/2

!

≤
Q0X
q=1

0@ 1√
2π(2 ln Q)1/2Q

+ CL3

0@ p3

0

n

!1/2

23q/2 +
2−q/2

p
1/2
0

1A1A
=

Q0√
2π(2 ln Q)1/2Q

+ CL3

0@ p3

0

n

!1/2
23Q0/2 − 1

23/2 − 1
+

1− 2−Q0/2

p
1/2
0 (1− 2−1/2)

1A
= o(1) + O

�
p3

n

�1/2

+ O

 
1

p
0

!1/2

= o(1) .

Hence substituting gives

(B.14) P

0@ max
p∈P,p>p

0

�bSp − bSp

�
/ bR2

0 − E(p, p)

V (p, p)
≥ (2 ln Q)1/2 + ε

1A = o(1) .

Suppose that p diverges. In this case, taking p
0

= p in (B.12) and (B.14) gives that the Proposition is proved.

Hence it remains to deal with the case where p remains bounded. In this case, choose p
0

= o(ln1/3 Q). Then

Proposition 2, (B.13), the Markov inequality, Lemma 2 and 1 yield

max
p∈P,p<p≤p

0

�bSp − bSp

�
− E(p, p) bR2

0

V (p, p)

≤ max
p∈P,p<p≤p

0

�eSp − eSp

�
− E(p, p)σ4

V (p, p)
+ max

p∈P,p<p≤p
0

������
�bSp − bSp

�
−
�eSp − eSp

�
V (p, p)

������+
���σ4 − bR2

0

��� max
p∈P,p<p≤p

0

E(p, p)

V (p, p)

≤ OP

24 X
p∈P,p<p≤p

0

V −1(p, p)
�

E
��� eSp − eSp

���+ E(p, p)
�35+ OP

 
1 +

�
p
0

n

�1/2
!

= OP

24 X
p∈P,p<p≤p

0

V −1(p, p)

 
n−1X
j=1

��K2(j/p)−K2(j/p)
��!35+ OP (1)

= OP

24 X
p∈P,p<p≤p

0

p1/2

35+ OP (1) = OP(p
3/2

0
) = oP(ln

1/2 Q) .
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Substituting this last bound and (B.14) in (B.12) shows that the Proposition is proved. 2

Appendix C: proof of Propositions 5 and 6

In what follows, we abbreviate ut,n, Rj,n, Ln and vn into ut, Rj , L and v. When studying the mean and variance

of eSp, we make use of Theorem 2.3.2 in Brillinger (2001) which implies in particular that, for any real zero-mean

random variables Z1, . . . , Z4,

(C.1) Cov (Z1Z2, Z3Z4) = Cov(Z1, Z3)Cov(Z2, Z4) + Cov(Z1, Z4)Cov(Z2, Z3) + Cum (Z1, Z2, Z3, Z4) .

Proof of Proposition 5. Set kj = K2(j/p) so that eSp = n
Pn−1

j=1 kj
eR2

j . Observe that (C.1) yields

E eR2
j =

1

n2

n−jX
t1,t2=1

E (ut1ut1+jut2ut2+j)

=
1

n2

n−jX
t1,t2=1

�
R2

j + R2
t2−t1 + Rt2−t1+jRt2−t1−j + κ (0, j, t2 − t1, t2 − t1 + j)

�
,

with

n−jX
t1,t2=1

R2
t2−t1 = (n− j)R2

0 + 2

n−j−1X
`=1

(n− j − `)R2
` ,

n−jX
t1,t2=1

Rt2−t1+jRt2−t1−j = (n− j)R2
j + 2

n−j−1X
`=1

(n− j − `)R`+jR`−j ,

n−jX
t1,t2=1

κ (0, j, t2 − t1, t2 − t1 + j) =

n−j−1X
`=−n+j+1

(n− j − |`|) κ (0, j, `, ` + j) .

Substituting in EeSp = n
Pn−1

j=1 kjE eR2
j then gives

EeSp −R2
0

n−1X
j=1

�
1− j

n

�
K2

�
j

p

�
= n

n−1X
j=1

 �
1− j

n

�2

+
1

n

�
1− j

n

�!
kjR

2
j(C.2)

+2

n−1X
j=1

kj

n−j−1X
`=1

�
1− j + `

n

��
R2

` + R`+jR`−j

�
+

n−1X
j=1

kj

n−j−1X
`=−n+j+1

�
1− j + |`|

n

�
κ (0, j, `, ` + j) .

Since Assumption K yields that kj = K2(j/p) > CI(j ≤ p) and since p ≤ n/2 for n large enough, the definition of

C(v, L) with vj nondecreasing gives, for the first sum of (C.2),

n

n−1X
j=1

 �
1− j

n

�2

+
1

n

�
1− j

n

�!
kjR

2
j ≥ n

�
1− p

n

�2
p−1X
j=1

R2
j ≥ Cn

 
∞X

j=1

R2
j −

∞X
j=p

v−2
j v2

j R2
j

!

≥ Cn

 
∞X

j=1

R2
j − v−2

p

∞X
j=0

v2
j R2

j

!
≥ Cn

 
∞X

j=1

R2
j −

�
LR0

vp

�2
!

.
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For the remaining sums in (C.2) we have by (2.4), Assumptions K and R, p = o(n),

�����
n−1X
j=1

kj

n−j−1X
`=1

�
1− j + `

n

�
R2

`

����� ≤ C

n−1X
j=1

I(j ≤ Cp)×
∞X

j=0

R2
j ≤ Cp

∞X
j=0

R2
j = o(n)

∞X
j=0

R2
j ,

�����
n−1X
j=1

kj

n−j−1X
`=1

�
1− j + `

n

�
R`+jR`−j

����� ≤ C

+∞X
j=1

+∞X
`=1

|R`+jR`−j | ≤ C

 
∞X

j=0

|Rj |

!2

≤ C(1 + L)2R2
0 ,

������
n−1X
j=1

kj

n−j−1X
`=−n+j+1

�
1− j + `

n

�
κ (0, j, `, ` + j)

������ ≤ C

∞X
t2,t3,t4=−∞

|κ(0, t2, t3, t4)| ≤ C(1 + L)2R2
0 .

Substituting in (C.2) shows that the Proposition is proved. 2

Proof of Proposition 6. Abbreviate K2(j/p) into kj and set Dj = eRj −Rj . Then EDj = 0 and

eSp = n

n−1X
j=1

kjR
2
j + 2n

n−1X
j=1

kjRjDj + n

n−1X
j=1

kjD
2
j .

The inequality (a + b)2 ≤ 2a2 + 2b2 implies that

(C.3) Var
�eSp

�
≤ 4Var

 
n

n−1X
j=1

kjRj
eRj

!
+ 2Var

 
n

n−1X
j=1

kjD
2
j

!
.

Since eRj =
Pn−j

t=1 utut+j/n, (C.1) gives for the first term on the RHS of (C.3),

Var

 
n

n−1X
j=1

kjRj
eRj

!
=

n−1X
j1,j2=1

kj1kj2Rj1Rj2

n−j1X
t1=1

n−j2X
t2=1

Cov (ut1ut1+j1 , ut2ut2+j2) ≤ V1 + K1

with

V1 =

�����
n−1X

j1,j2=1

kj1kj2Rj1Rj2

n−j1X
t1=1

n−j2X
t2=1

(Rt2−t1Rt2−t1+j2−j1 + Rt2−t1−j1Rt2−t1+j2)

����� ,

K1 =

�����
n−1X

j1,j2=1

kj1kj2Rj1Rj2

n−j1X
t1=1

n−j2X
t2=1

κ (t1, t1 + j1, t2, t2 + j2)

����� .

Observe now that the second term on the RHS of (C.3) is

Var

 
n

n−1X
j=1

kjD
2
j

!
= n2

n−1X
j1,j2=1

kj1kj2Cov
�
D2

j1 , D2
j2

�
.
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Then applying (C.1) twice gives

Cov
�
D2

j1 , D2
j2

�
=

1

n4

n−j1X
t1,t2=1

n−j2X
t3,t4=1

Cov

"
2Y

q=1

�
utq utq+j1 − E[utq utq+j1 ]

�
,

4Y
q=3

�
utq utq+j2 − E[utq utq+j2 ]

�#

=
1

n4

n−j1X
t1,t2=1

n−j2X
t3,t4=1

[Cov (ut1ut1+j1 , ut3ut3+j2)Cov (ut2ut2+j1 , ut4ut4+j2)

+ Cov (ut1ut1+j1 , ut4ut4+j2)Cov (ut2ut2+j1 , ut3ut3+j2)]

+
1

n4

n−j1X
t1,t2=1

n−j2X
t3,t4=1

Cum(ut1ut1+j1 , ut2ut2+j1 , ut3ut3+j2 , ut4ut4+j2)

=
2

n4

 
n−j1X
t1=1

n−j2X
t2=1

(Rt2−t1Rt2−t1+j2−j1 + Rt2−t1−j1Rt2−t1+j2 + κ(t1, t1 + j1, t2, t2 + j2))

!2

+
1

n4

n−j1X
t1,t2=1

n−j2X
t3,t4=1

Cum(ut1ut1+j1 , ut2ut2+j1 , ut3ut3+j2 , ut4ut4+j2) .

Then substituting in the expression of Var
�
n
Pn−1

j=1 kjD
2
j

�
above gives, since (a + b + c)2 ≤ 3(a2 + b2 + c2),

Var

 
n

n−1X
j=1

kjD
2
j

!
≤ 6V2 + K2 + 6K′

2 with

V2 =
1

n2

n−1X
j1,j2=1

kj1kj2

0@ n−j1X
t1=1

n−j2X
t2=1

Rt2−t1Rt2−t1+j2−j1

!2

+

 
n−j1X
t1=1

n−j2X
t2=1

Rt2−t1−j1Rt2−t1+j2

!2
1A ,

K2 =

����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

Cum(ut1ut1+j1 , ut2ut2+j1 , ut3ut3+j2 , ut4ut4+j2)

����� ,

K′
2 =

1

n2

n−1X
j1,j2=1

kj1kj2

 
n−j1X
t1=1

n−j2X
t2=1

κ (t1, t1 + j1, t2, t2 + j2)

!2

,

Substituting in (C.3) shows that the Proposition follows from

V1 ≤ Cn(1+L)2R2
0

∞X
j=1

R2
j , V2 ≤ Cp(1+L)4R4

0 , K1 ≤ Cn(1+L)2R2
0

∞X
j=1

R2
j , K′

2 ≤ C((1+L)R0)
4 , K2 ≤ C(1+L)4R4

0
p2

n
,

that we establish now in the next five steps.

Bound for V1. Observe first that (2.4) gives

sup
λ∈[−π,π]

|f(λ)| = sup
λ∈[−π,π]

����� 1

2π

∞X
j=−∞

R|j|e
ijλ

����� ≤ 1

2π

 
R0 + 2

∞X
j=1

|Rj |

!
≤ C(1 + L)R0 .
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Since |Rj | ≤ |Rj | and since 0 ≤ kj ≤ C for all j under Assumption K, using the covariance spectral representation

Rj =
R π

−π
exp(±ijλ)f(λ)dλ gives, for the sums in V1,

�����
n−1X

j1,j2=1

kj1kj2Rj1Rj2

n−j1X
t1=1

n−j2X
t2=1

Rt2−t1Rt2−t1+j2−j1

�����
=

Z π

−π

Z π

−π

�����
n−1X
j=1

kjRj

n−jX
t=1

eitλ1ei(t+j)λ2

�����
2

f(λ1)f(λ2)dλ1dλ2

≤

 
sup

λ∈[−π,π]

|f(λ)|

!2 Z π

−π

Z π

−π

n−1X
j1,j2=1

kj1Rj1kj2Rj2

n−j1X
t1=1

n−j2X
t2=1

eit1λ1ei(t1+j1)λ2e−it2λ1e−i(t2+j2)λ2dλ1dλ2

≤ C(1 + L)2R2
0

n−1X
j=1

(n− j)k2
j R

2
j ≤ Cn(1 + L)2R2

0

∞X
j=1

R2
j ,

�����
n−1X

j1,j2=1

kj1kj2Rj1Rj2

n−j1X
t1=1

n−j2X
t2=1

Rt2−t1−j1Rt2−t1+j2

�����
=

�����
Z π

−π

Z π

−π

n−1X
j1=1

kj1Rj1

n−j1X
t1=1

e−i(t1+j1)λ1e−it1λ2 ×
n−1X
j2=1

kj2Rj2

n−j2X
t2=1

eit2λ1ei(t2+j2)f(λ1)f(λ2)dλ1dλ2

�����
≤

Z π

−π

Z π

−π

�����
n−1X
j=1

kjRj

n−jX
t=1

eitλ1ei(t+j)λ2

�����
2

f(λ1)f(λ2)dλ1dλ2 ≤ Cn(1 + L)2R2
0

∞X
j=1

R2
j

by the Cauchy-Schwarz Inequality, which gives the desired bound for V1.

Bound for V2. The change of variables t2 = t1 + t′2, j2 = j1 + j′2, Assumption K and (2.4) give, for the two sums

in V2,

1

n2

n−1X
j1,j2=1

kj1kj2

 
n−j1X
t1=1

n−j2X
t2=1

Rt2−t1Rt2−t1−j1+j2

!2

≤ C

n2

n−1X
j1=1

K2(j1/p)

∞X
j′2=−∞

0@n

+∞X
t′2=−∞

���Rt′2
Rt′2+j′2

���
1A2

≤ Cp×

 
∞X

j2,t1,t2=−∞

|Rt1Rt1+j2Rt2Rt2+j2 |

!
≤ Cp

 
∞X

t=−∞

|Rt|

!4

≤ Cp(1 + L)4R4
0 ,

1

n2

n−1X
j1,j2=1

kj1kj2

 
n−j1X
t1=1

n−j2X
t2=1

Rt2−t1−j1Rt2−t1+j2

!2

≤ C

n2

n−1X
j1=1

K2(j1/p)

∞X
j′2=−∞

0@n

+∞X
t′2=−∞

���Rt′2−j1Rt′2+j1+j′2

���
1A2

≤ Cp

∞X
j′2,t1,t2=−∞

���Rt1−j1Rt1+j1+j′2
Rt2−j1Rt2+j1+j′2

��� ≤ Cp

∞X
j,t1,t2=−∞

|Rt1Rt1+jRt2Rt2+j |

≤ Cp

 
∞X

t=−∞

|Rt|

!4

≤ Cp(1 + L)4R4
0 ,

which gives the desired bound for V2.
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Bound for K1. Since |Rj | ≤ |Rj |, the change of variable t2 = t1 + t, Assumptions K and R and the Cauchy-

Schwarz inequality give

K1 ≤ Cn

∞X
j1,j2=1

 
|Rj1Rj2 |

∞X
t=−∞

|κ(0, j1, t, t + j2)|

!
≤ Cn

 
∞X

j=1

R2
j

! 
∞X

j1,j2=1

 
∞X

t=−∞

|κ(0, j1, t, t + j2)|

!2!1/2

≤ Cn

 
∞X

j=1

R2
j

! 
∞X

t1,t2,t3=−∞

|κ(0, t1, t2, t3)|

!
≤ Cn(1 + L)2R2

0

∞X
j=1

R2
j .

Bound for K′
2. We have under Assumption R

K′
2 ≤ 1

n2

n−1X
j1,j2=1

kj1kj2

 
n−j1X
t1=1

n−j2X
t2=1

|κ (0, j1, t2 − t1, t2 − t1 + j2)|

!2

≤ C

+∞X
j1,j2=1

 
∞X

t=−∞

|κ(0, j1, t, t + j2)|

!2

= C

+∞X
j1,j2=1

∞X
t1,t2=−∞

|κ(0, j1, t1, t1 + j2)κ(0, j1, t2, t2 + j2)| ≤ C

 
∞X

t2,t3,t4=−∞

|κ(0, t2, t3, t4)|

!2

≤ C((1 + L)R0)
4 .

Bound for K2. Bounding K2 requires additional notations. First set t5 = t1 + j1, t6 = t2 + j1, t7 = t3 + j2, t8 =

t4 + j2, keeping in mind that t5, . . . , t8 depend upon t1, . . . , t4 and j1, j2 only. For a partition B = {B`, ` = 1, . . . , dB}
of {1, . . . , 8}, define

dB = CardB , κB(t1, . . . , t8) =

dBY
`=1

Cum
�
utq , q ∈ B`

�
,

and recall that Cum(ut) = Eut = 0. Then the largest dB yielding a non vanishing κB is dB = 4. When dB = 4,

B is a pairwise partition of {1, . . . , 8} so that κB is a product of covariances. Let B be the set of indecomposable

partitions of the two-way table

1 5

2 6

3 7

4 8

,

see Brillinger (2001, p. 20) for a definition. Then according to Brillinger (2001, Theorem 2.3.2),

Cum (ut1ut1+j1 , ut2ut2+j1 , ut3ut3+j2 , ut4ut4+j2) =
X
B∈B

κB(t1, . . . , t8)

=
X

B∈B,dB≤3

κB(t1, . . . , t8) +
X

B∈B,dB=4

κB(t1, . . . , t8) .

Some properties of partitions in B are as follows. Call {1, 5}, {2, 6}, {3, 7}, {4, 8} fundamental pairs and say that a B1

in a partition B breaks the pair {1, 5} if {1, 5} is not a subset of B1. Then partitions B in B are such that each B` in

B must break a fundamental pair. Note that fundamental pairs play a symmetric role. Since tq+4− tq is j1 or j2 with

vanishing kj1 or kj2 if j1 or j2 is larger than p, the indexes tq and tq+4 of a fundamental pair also play a symmetric

role in the computations below. We now discuss the contribution to K2 of partitions of {1, . . . , 8} i according to the

possible values 1, . . . , 4 of dB .
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Under Assumptions K and R, the case dB = 1 gives a contribution to K2 bounded by����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κ (t1, . . . , t8)

����� ≤ C

n2

nX
t1,...,t8=−n

|κ (0, t2 − t1, . . . , t8 − t1)|

≤ C

n

∞X
t′2,...,t′8=−∞

��κ �0, t′2, . . . , t
′
8

��� ≤ C((1 + L)R0)
4

n
.

The case dB = 2 corresponds to {CardB1, CardB2} being {2, 6}, {3, 5}, or {4, 4}. These cases are very similar

and we limit ourselves to {2, 6} and B1 = {1, 2}, the other choices of B1 being symmetric. The corresponding

contribution to K2 is bounded by����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κB (t1, . . . , t8)

����� ≤ C

n2

nX
t1,...,t8=−n

|κ (0, t2 − t1) κ (t3 − t1, . . . , t8 − t1)|

≤ C

n

nX
t′2,...,t′8=−n

��κ �0, t′2
�
κ
�
t′3, . . . , t

′
8

��� ≤ C

n

nX
t=−n

|Rt|
nX

t′3,...,t′8=−n

��κ �0, t′4 − t′3, . . . , t
′
8 − t′3

���
≤ C

∞X
t=−∞

|Rt|
∞X

t2,...,t6=−∞

|κ (0, t2, . . . , t6)| ≤ C((1 + L)R0)
4 ,

by Assumptions K, R and (2.4).

The case dB = 3 corresponds to {CardB1, CardB2, CardB3} being {2, 2, 4} and {2, 3, 3} and we start with

CardB1 = 2, CardB2 = 2 and CardB3 = 4, the other choices being symmetric. The discussion concerns the number

of fundamental pair broken by B3. Note that B3 breaks only 3 or 1 fundamental pairs is impossible. The case where

B3 does not break any fundamental pairs corresponds to decompositions that are not indecomposable, so that the

next cases are B3 can break only 4 or 2 fundamental pairs.

• B3 breaks 4 fundamental pairs. Consider B3 = {1, 2, 3, 4}, B2 = {5, 6} and B3 = {7, 8}, the other cases

being symmetric. The corresponding contribution to K2 is bounded by����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κB (t1, . . . , t8)

�����
=

����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κ (0, t2 − t1, t3 − t1, t4 − t1) Rt2−t1Rt4−t3

�����
≤ C

p2

n
sup

j
|Rj |2

∞X
t2,t3,t4=−∞

|κ (0, t2, t3, t4)| ≤ C((1 + L)R0)
4 p2

n
,

by Assumptions K, R and (2.4).

• B3 breaks only 2 fundamental pairs. Take B3 = {1, 2, 3, 5}, B2 = {4, 6} and B1 = {7, 8}, the other

indecomposable partitions being symmetric. The change of variables t2 = t′2 + t1, t3 = t′3 + t1, t4 = t′4 + t3

shows that contribution to K2 is bounded by����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κB (t1, . . . , t8)

�����
=

����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κ (0, t2 − t1, t3 − t1, j1) Rt4−t2−j1Rt4−t3

�����
≤ C

n

n−1X
j2=1

K2(j2/p)

∞X
t′2,t′3,j1=−∞

��κ �0, t′2, t
′
3, j1

��� +∞X
t′4=−∞

���Rt′4

���× sup
j
|Rj | ≤ C((1 + L)R0)

4 p

n
,
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under Assumptions K, R and (2.4).

We now turn to the case CardB3 = CardB2 = 3, CardB1 = 2. Observe that B3 or B2 must break 3 or 1

fundamental pairs. The discussion now concerns the fundamental pairs which are simultaneously broken by B3 and

B2. Note that B3 and B2 cannot break the same 3 fundamental pairs because if so, B1 will be given by the remaining

fundamental pair in which case B1 cannot communicate with B2 or B3, a fact that would contradict that the partition

{B1, B2, B3} is indecomposable.

• B3 and B2 break 3 fundamental pairs, 2 of which are the same . Take B3 = {1, 2, 3}, B2 = {4, 5, 6} and

B1 = {7, 8}, the other choices being symmetric. This gives, under Assumptions K, R and (2.4) together

with the change of variables t2 = t1 + t′2, t3 = t1 + t′3, t4 = t3 + t′4, a contribution to K2 bounded by����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κB (t1, . . . , t8)

�����
=

����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κ (0, t2 − t1, t3 − t1) κ (0, t1 − t4 + j1, t2 − t4 + j1) Rt4−t3

�����
≤ C

n

n−1X
j1,j2=1

K2(j1/p)K2(j2/p) sup
t2,t3

|κ(0, t2, t3)|
∞X

t′2,t′3=−∞

��κ �0, t′2, t
′
3

��� +∞X
t′4=−∞

���Rt′4

��� ≤ C((1 + L)R0)
4 p2

n
.

Note that B3, B2 breaking 3 fundamental pairs with less than one in common is impossible. Hence the

next cases assumes that B2 breaks only 1 fundamental pair, which is also necessarily broken by B3 since

B2 must contain the remaining unbroken pair.

• B3 breaks 3 fundamental pairs and B2 breaks only 1 pair. Take B3 = {1, 2, 3}, B2 = {4, 5, 8}, B3 = {6, 7}
which under Assumptions K, R and (2.4) together with the change of variables t2 = t1 + t′2, t3 = t1 + t′3, t4 =

t1 + j1 − t′4, a contribution to K2 bounded by����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κB (t1, . . . , t8)

�����
=

����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κ (0, t2 − t1, t3 − t1) κ (t1 − t4 + j1, 0, j2) Rt3−t2+j2−j1

�����
≤

C supj |Rj |
n

n−1X
j1

K2(j1/p)

∞X
t′2,t′3=−∞

��κ(0, t′2, t
′
3)
�� ∞X

t′4,j2=−∞

��κ �t′4, 0, j2
��� ≤ C((1 + L)R0)

4 p

n
.

• B3 and B2 break only 1 pair . Note that B3 and B2 cannot break the same pair, because B1 must be

the remaining pair and cannot communicate, so that the partition is not indecomposable. Hence all the

partitions in this case are similar to B3 = {1, 2, 5}, B2 = {3, 4, 8}, B1 = {6, 7}. The change of variable

t2 = t1 + t′2, t3 = −j2 + t2 + j1 + t′3, t4 = t3 − t′4 yields a contribution to K2 bounded by����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κB (t1, . . . , t8)

�����
=

����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κ (0, t2 − t1, j1) κ (t3 − t4, 0, j2) Rt3−t2+j2−j1

�����
≤ C

∞X
j1,t′2=−∞

��κ(0, t′2, j1)
�� ∞X

j2,t′4=−∞

|κ(t4, 0, j2)|
∞X

t′3=−∞

���Rt′3

��� ≤ C((1 + L)R0)
4 .
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It remains to deal with the case dB = 4 which corresponds to pairwise partition. Note that indecomposable

partitions are such that all fundamental pairs are broken, but that two sets cannot break the same fundamental pairs,

see Brillinger (2001, p. 20). Hence such partitions are symmetric to B1 = {1, 2}, B2 = {3, 4}, B3 = {5, 8}, B4 = {6, 7}.
Using the change of variables j1 = t4 + j2 − t1 − j′1, t2 = t1 + t′2, t3 = t2 + j1 − j2 + t′3, t4 = t3 + t′4 gives, under

Assumption K and (2.4) a contribution to K2 bounded by����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

κB (t1, . . . , t8)

�����
=

����� 1

n2

n−1X
j1,j2=1

kj1kj2

n−j1X
t1,t2=1

n−j2X
t3,t4=1

Rt2−t1Rt4−t3Rt4−t1+j2−j1Rt3−t2+j2−j1

�����
≤ C

n

 
n−1X
j=1

K2(j/p)

!
∞X

j′1=−∞

|Rj′1
|

∞X
t′2,t′3,t′4=−∞

���Rt′2
Rt′3

Rt′4

��� ≤ C((1 + L)R0)
4 p

n
.

Collecting terms shows that the bounds for K2 is proved since p ≥ 1. 2

Appendix D: definitions of adaptive rate-optimality

Horowitz and Spokoiny (2001) defines adaptive rate-optimality as follows. Consider a test τn based on bu1, . . . , bun,

that rejects H0 if τn = 1. Define its minimax power against alternatives in C(L, s) at distance ρ > 0 from the null as

βL,s(τn; ρ) = inf

(
P(τn = 1) ; {ut, t ≥ 1} in C(L, s) with

∞X
j=1

(Rj/R0)
2 ≥ ρ2

)
.

Definition 1. The optimal adaptive testing rate R∗
n(·, ·) satisfies the two following conditions:

(i) For any α in (0, 1), there is a test τ∗n with asymptotic level α such that, for any compact intervals Is and

IL of R, we have, for some t > 0,

inf
(L,s)∈IL×Is

βL,s (τ∗n; tR∗
n(L, s)) ≥ 1− o(1) .

(ii) If Rn(L, s) = o(R∗
n(L, s)) for some L, s, then there are some compact Is and IL of R such that, for any α

in (0, 1), and for any test τn of asymptotic level α,

inf
(L,s)∈IL×Is

βL,s (τ∗n;Rn(L, s)) ≤ α + o(1) .

That Definition 1-(i) implies Definition 1-(i) is clear. To see that the converse is also true, suppose that Definition

1-(i) and not Definition 1-(i). Then the test τ∗n from Definition 1-(i) is such that

inf
(L,s)∈IL×Is

βL,s (τ∗n; tR∗
n(L, s)) ≤ βt + o(1) ,

with βt < 1 for all t > 0. Since the infimum of the minimax power is approximately achieved by some alternative in

C(L, s) with L and s in IL and Is, this implies, for any t, the existence of some sequence of alternatives in C(Ln, sn),

with bounded Ln and sn, at distance tR∗
n(Ln, sn) from the null, against which the test τ∗n has a power asymptotically

smaller than 1, contradicting Definition 1-(i).

Similarly, Definition 1-(ii) clearly implies Definition 1-(ii). For the converse, it is again sufficient to observe that

there are some Ln in IL, sn in Is and {u(n)
t , t ≥ 1} in C(Ln, sn) with

P∞
j=1(R

(n)
j /R

(n)
0 )2 ≥ R2

n(Ln, sn) such that

P(τn = 1) achieves the infimum inf(L,s)∈IL×Is βL,s (τ∗n;Rn(L, s)) up to an error smaller to 1/n. 2


