LASSO, Iterative Feature Selection and the Correlation Selector Oracle Inequalities and Numerical Performances

Pierre Alquier

LPMA, University Paris 7 & LS, CREST

July 24, 2008

A (1) > A (2) > A

Setting of the problem Confidence region for β Estimation using confidence regions

Introduction: Confidence Region For β

Setting of the problem Confidence region for β Estimation using confidence regions

Estimating $X\beta$

General Remarks Iterative Feature Selection LASSO

Estimating β

General Remarks The Dantzig Selector

Extensions

General Remarks The Correlation Selector Estimation of $Z\beta$

Setting of the problem Confidence region for β Estimation using confidence regions

Regression model

Regression model:

$$Y = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix} \sim \mathcal{N}\left(X\beta, \sigma^2 I_n\right)$$

where X is a $n \times p$ matrix, $\beta \in \mathbb{R}^{p}$, and possibly:

p > n.

æ

Setting of the problem Confidence region for β Estimation using confidence regions

Quantity of interest

We may be interested in the estimation of several quantities:

- β itself (estimation and interpretation of the parameter);
- Xβ (denoising problem);
- ► Zβ in general for example transductive regression, we have:

$$Y_i = X_i\beta + \varepsilon_i$$

for $i \in \{1, ..., n\}$ where X_i is the *i*-th line of X. Moreover, a new set of X_i 's is available: $X_{n+1}, ..., X_{n+m}$ and we want to predict the corresponding values. We define Z as the matrix which lines are the X_{n+i} and we want to predict: $Z\beta$.

Setting of the problem Confidence region for β Estimation using confidence regions

Distribution of
$$X'(Y - X\beta)$$

Note that $Y \sim \mathcal{N}(X\beta, \sigma^2 I_n)$ leads to

$$X'(Y - X\beta) \sim \mathcal{N}\left(0, \sigma^2(X'X)\right).$$

Usual normalization: $(X'X)_{i,i}/n = 1$.

So, for any $i \in \{1,...,p\}$, $[X'(Y - X\beta)]_i \sim \mathcal{N}(0, n\sigma^2)$, and so

$$\mathbb{P}\left\{\left|[X'(Y-Xeta)]_i\right|\geq t\right\}\leq \exp\left(rac{-t^2}{2n\sigma^2}
ight).$$

イロト イヨト イヨト イヨト

э

Setting of the problem Confidence region for β Estimation using confidence regions

Confidence regions for eta

Union bound:

$$\mathbb{P}\left\{\exists i, \quad \left| [X'(Y-X\beta)]_i \right| \geq t \right\} \leq p \exp\left(\frac{-t^2}{2n\sigma^2}\right) = \varepsilon,$$

that leads to

$$\mathbb{P}\left\{\forall i \in \{1, ..., p\}, \beta \in \mathit{CR}_i(\varepsilon)\right\} \geq 1 - \varepsilon$$

where

$$CR_i(\varepsilon) = \left\{ b \in \mathbb{R}^p, \left| [X'(Y - Xb)]_i \right| \leq \sigma \sqrt{2n \log \frac{p}{\varepsilon}} \right\}.$$

・ロト ・回ト ・ヨト ・ヨト

臣

Setting of the problem Confidence region for β Estimation using confidence regions

Intersection of the confidence regions

Remarks: (1) Equivalently

$$\mathbb{P}\left\{\beta \in \mathit{CR}(\varepsilon)\right\} \geq 1 - \varepsilon$$

where

$$CR(\varepsilon) = \bigcap_{i=1}^{p} CR_i(\varepsilon),$$

$$CR(\varepsilon) = \left\{ b \in \mathbb{R}^p, \|X'(Y - Xb)\|_{\infty} \leq \sigma \sqrt{2n \log \frac{p}{\varepsilon}} \right\}.$$

(2) The same results could be obtained with non-gaussian noise (using Hoeffding's inequality for example)...

Setting of the problem Confidence region for β Estimation using confidence regions

Estimation using $CR_i(\varepsilon)$

With large probability, the region $CR_i(\varepsilon)$ is closed, convex and contains β . Let d(.,.) be a distance on \mathbb{R}^p , and $\Pi_{CR_i(\varepsilon)}$ be the orthogonal projection onto $CR_i(\varepsilon)$ with respect to d. Then we have for any $b \in \mathbb{R}^p$,

$$d\Big(\prod_{CR_i(\varepsilon)}b,\beta\Big)\leq d(b,\beta).$$

Consequence: for any estimator $\hat{\beta}$ of β , $\prod_{CR_i(\varepsilon)} \hat{\beta}$ is a better estimator (at least for the distance d).

General Remarks Iterative Feature Selection LASSO

Estimation of $X\beta$: general remarks

We want to estimate $X\beta$

Natural distance:

$$d(b,B) = \|Xb - XB\|_2.$$

Two methods: Iterative Feature Selection, and LASSO.

General Remarks Iterative Feature Selection LASSO

Iterative Feature Selection

Remarks on the confidence regions motivates the following algorithm:

- start from $\beta(0) = 0$;
- ▶ step *n*: choose i(n) and $\beta(n+1) = \prod_{CR_{i(n)}(\varepsilon)}\beta(n)$;

stop when no (significative) improvement is possible.

Theorem: We have

$$\mathbb{P}iggl\{orall n\in\mathbb{N}, \|X[eta(n+1)-eta]\|_2^2\leq\|X[eta(n)-eta]\|_2^2iggr\}\geq 1-arepsilon.$$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

General Remarks Iterative Feature Selection LASSO

LASSO (dual form)

Why not use a projection on $CR(\varepsilon) = \bigcap_i CR_i(\varepsilon)$?

$$\hat{\beta} \in \begin{cases} \arg\min_{b \in \mathbb{R}^p} \|Xb\|_2^2 \\ s.t.\|X'(Y - Xb)\|_{\infty} \le s = \sigma \sqrt{2n\log \frac{p}{\varepsilon}}. \end{cases}$$

Theorem: (Osborne, Presnell & Turlach, 2000) Let $\tilde{\beta}$ be a solution of the LASSO program (Tibshirani *et al.*, 1996)

$$ilde{eta} = \arg\min_{b\in\mathbb{R}^p}igg\{ ig\|Y-Xbig\|_2^2 + 2s\|b\|_1igg\},$$

then $X\tilde{\beta} = X\hat{\beta}$.

<日本

<</p>

Iterative Feature Selection LASSO

Oracle Inequality on the LASSO

Sparsity: a lot of β_i are equal to 0;

$$\|\beta\|_0 = \sum_{i=1}^p \mathbb{1}_{\beta_i \neq 0}.$$

Theorem: (Tsybakov et al., 2007) If X satisfies

$$\max_{i,\beta_i\neq 0} \max_{j\neq i} \frac{(X'X)_{i,j}}{n} \leq \frac{1}{16\|\beta\|_0},$$

then

$$\mathbb{P}igg\{\|X(\hat{eta}-eta)\|_2^2\leq 16\sigma^2\|eta\|_0\lograc{p}{arepsilon}igg\}\geq 1-arepsilon.$$

Introduction: Confidence Region For β Estimating Xβ Estimating β Estimations

General Remarks The Dantzig Selector

Estimation of β : general remarks

In this section we want to estimate β .

Natural distance:

$$d(b,B) = \|b-B\|_1.$$

Example: The Dantzig Selector.

General Remarks The Dantzig Selector

The Dantzig Selector

Estimator introduced by Candes and Tao (2007), in order to estimate β .

$$\hat{\beta}_D \in \begin{cases} \arg\min_{b \in \mathbb{R}^p} \|b\|_1 \\ s.t. \|X'(Y - Xb)\|_{\infty} \leq s. \end{cases}$$

Oracle inequalities: Candes and Tao (2007), Tsybakov *et al.* (2007), etc... With the same kind of hypothesis: sparsity for β , and parts of X'X are nearly orthogonal.

・ロト ・ 同ト ・ ヨト ・ ヨト

General Remarks The Correlation Selector Estimation of $Z\beta$

General Remarks

The previous examples are a motivation to study the general family of estimators

 $\left\{ \begin{array}{l} \arg\min_{b\in\mathbb{R}^p} d(b,0)\\ \\ s.t.\|X'(Y-Xb)\|_{\infty}\leq s \end{array} \right.$

with a general distance d.

In this last section, we exhibit another interesting estimator in this family (the Correlation Selector) and conclude by a discussion on the transductive regression case where we think one should take $d(b, B) = ||Z(b - B)||_2$ to estimate $Z\beta$.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

General Remarks The Correlation Selector Estimation of $Z\beta$

The Correlation Selector

We put

$$\hat{eta}_{CS} \in \left\{ egin{argmin}{l} rgmin_{b \in \mathbb{R}^p} \| (X'X)b \|_q^q \ s.t. \| X'(Y-Xb) \|_\infty \leq s \end{array}
ight.$$

where we can prove that the solution does not depend on q. We also prove:

$$(X'X)\hat{\beta}_{CS} = \begin{pmatrix} th[(X'Y)_1] \\ \vdots \\ th[(X'Y)_p] \end{pmatrix},$$

where th(.) soft-thresholding function with threshold s.

・ 回 ト ・ ヨ ト ・ ヨ ト …

General Remarks The Correlation Selector Estimation of $Z\beta$

Oracle Inequality for the Correlation Selector

Sparsity of the correlations: $(X'X)\beta = E(X'Y)$ is sparse. *Theorem:* We have

$$\mathbb{P}\left\{\left\|\frac{(X'X)}{n}(\hat{\beta}_{CS}-\beta)\right\|_{2}^{2}\leq 8\sigma^{2}\|(X'X)\beta\|_{0}\frac{\log\frac{p}{\varepsilon}}{n}\right\}\geq 1-\varepsilon.$$

What about the estimation of $X\beta$?

General Remarks The Correlation Selector Estimation of $Z\beta$

Oracle Inequality for the Correlation Selector

Let us assume that for any b such that $[E(XY)]_i = 0 \Rightarrow b_i = 0$,

$$b'b \leq cb'\left(\frac{X'X}{n}\right)b.$$

Theorem: We have

$$\mathbb{P}\left\{\left\|X(\hat{\beta}_{CS}-\beta)\right\|_{2}^{2}\leq 8c\sigma^{2}\|(X'X)\beta\|_{0}\log\frac{p}{\varepsilon}\right\}\geq 1-\varepsilon.$$

General Remarks The Correlation Selector Estimation of $Z\beta$

Experimental results (1/2)

Tibshirani's experiments, n = 20, p = 8, $\beta = (3, 1.5, 0, 0, 2, 0, 0, 0)$, columns of X gaussian with correlation = 0.5 and $\sigma \in \{1, 3\}$, theoretical value for s (not optimal in practice).

σ	OLS	LASSO	IFS	CS
3	3.67	1.64	1.56	3.65
	1.84	1.25	1.20	1.96
	8	4.64	4.62	8
1	0.40	0.29	0.36	0.44
	0.22	0.19	0.23	0.23
	8	5.42	5.70	8

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction: Confidence Region For β Estimating Xβ Estimating β Extensions

General Remarks The Correlation Selector Estimation of $Z\beta$

Experimental results (2/2)

Same experiment with β such that

 $(X'X/20)\beta = (3, 1.5, 0, 0, 2, 0, 0, 0).$

σ	OLS	LASSO	IFS	CS
3	3.64	4.83	5.12	2.41
	1.99	2.53	2.64	1.92
	8	5.98	6.05	8
1	0.41	1.09	0.92	0.26
	0.21	1.72	0.48	0.19
	8	7.11	7.40	8

The Correlation Selector Estimation of $Z\beta$

Estimation of $Z\beta$

Natural to use the distance $d(b, B) = ||Z(b - B)||_2$. Estimator:

 $\begin{cases} \arg\min_{b\in\mathbb{R}^p} \|Zb\|_2^2\\ s.t.\|X'(Y-Xb)\|_{\infty} \leq s \end{cases}$

estimates $Z\beta$ but with a very unnatural sparsity hypothesis for β . We have to replace the constraint $\|X'(Y - Xb)\|_{\infty} < s$ by another one of the type $\|P(Y - Xb)\|_{\infty} < s$ for some P linked with X and Z.

Work in progress with Mohamed Hebiri (Paris 7).

・ロト ・回ト ・ヨト ・ヨト