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The statistical framework

We observe
Y ~ N (u, 02 /,,)

where both parameters ;. € R” and o > 0 are unknown.

Our aim: Estimate 1. from the observation of Y.



Example : Variable selection

p
Y~N <u, 02/,7) with 11 = Z 0;X;.
j=1
and p possibly larger than n but expect that

|1, 0;# 0} < n

Our aim: Estimate 1. and {j, 6; # 0}.



The estimation strategy: model selection

We start with a collection {S;;, m € M} of linear subspaces
(models) of R".
Sm — /,;Lm = I_lsm Y

Our aim : select m = M(Y) among M in such a way

E{ fﬂﬂ lose infE[ - 2]
= fi|”| close to inf E |[u— fim|



Variable selection (continued)

p
Y ~N (/L, (72/,,> with = ZQij
j=1
Form c {1,...,p}, such that |m| < Dmax < n we set

Sm = Span {X}, j € m}.

@ Ordered variable selection. Take
Mo={{1,...,D}, D < Dmax} U {2}
@ (Almost) complete variable selection. Take

Me={mcC P{1,...,p}), Im| < Dmax}



Some selection criteria

m= argmin <| Y — iml? + pen(m)>

- Mallows’C,, (1973): pen(m) = 2Dpmo® where

- Birgé & Massart (2001): pen(m) = pen(m, o?).



@ Advantages :

- Non-asymptotic theory

- Variable selection: no assumption on the predictors X;.

- Bayesian flavor : allows (into some extent) to take into
account knowlege/intuition

@ Drawbacks :
- The computation of m may not feasible if M is too large



For the problem of variable selection :
@ Tibshirani(1996) Lasso :
2
p
Y =D 0X| + 6]

=

0* = argmin
DeRP

@ Candes & Tao (2007) Dantzig selector:

p
(X, Y — Z 0 X;r)

=

0* = argmin{ |0];, max
j:17"'7p

5

. mA:{j, é};éo} and fign = Y 0X;

jem



@ Advantages :

- The computation is feasible even if p is very large
- Non-asymptotic theory

@ Drawbacks :
- The procedure work under suitable assumptions on the
predictors X;
- There is no way to check these assumptions if p is very
large
- Blind to knowledge/intuition



For all these procedures, remains the problem of
estimating o2 or choosing )

@ These parameters depends on the data distribution and
must be estimated

@ In general, there is no natural estimator of o2 (complete
variable selection with p > n)

@ Cross-validation...

@ The performance of the procedure crucially depends upon
these parameters.



Other selection criteria

Crit(m) = |Y — P <1 +Pen(m)>
m

!
Crit'(m) ::Iog(\Y——ﬁmF>-%pen( )

Both criteria are the same if one takes

pen(m)
n— Dy

pen’(m) = nlog (1 + ) ~ pen(m)



. R en(m
crit(m) = |Y — fim[? <‘| + f;(D,Z,>
or
. B - 2\, pen'(m)
Crit(m) = log (\Y—um| ) + =

@ Akaike(1969) FPE : pen(m) = 2D,

@ Akaike(1973) AIC : pen’(m) = 2Dp,

@ Schwarz/Akaike (1978) BIC/SIC : pen’(m) = Dy, log(n)
@ Saito(1994) AMDL : pen’(m) = 3Dy, log(n)



Two questions

@ What can be said about these selection criteria from a
non-asymptotic point of view?

© Is it possible to propose other penalties that would take into
account the complexity of the collection {Sy,, me M}?



What do we mean by complexity?

We shall say that that the collection {S,,, m € M} is a-complex
(with a > 0) if

{me M, Dn=D}| <e® vD>1.

@ For the collection {S;,, m e M,}
{meM, Dn=D}| <1 = a=0
@ For the collection {S,,, m € M.}

{me M, Dp=D}| < (g) <p® — a—log(p)



Penalty choice with regard to complexity

Let ¢(x) = (x — 1 —log(x))/2 for x > 1.

Consider a a-complex collection {Sp,, m € M}. If for some
K,K' > 1
pen(m)

K< ——>— <K, Vme M*
~ ¢~ Y(a)Dm —
and select
- iy a2 (1 pen(m)
m=argmin ¥ — jim| ( M-
then

—fal?
E |:‘l lzm‘ i|

(o2

— < C(K)K' ¢ '(a)
infme ['“ﬂgm' } v

g




Case of ordered variable selection

a=0,¢ "(a)=1. Forall m € M such that D, # 0

< K < P g
<= <

one has ,
E [\/l*%ﬁv‘ }

(o2

C(K)K'

IN

o

inf e [7‘”*@"‘1 V1

— FPE and AIC (for n large enough)



Case of the complete variable selection with p = n

a=log(n), o~ '(a) ~ 2log(n). If for all m € M such that D, # 0

pen(m) /
< —— 1 _<K
1<Ks< 2Dmlog(n) —

then
E [\/t*ﬁﬁv‘z}

O'

< C(K)K' log(n)

o2

inf e v E P*‘ fim|? } V1

— AMDL (but not AIC, FPE, BIC)



New penalties

Let Xp ~ x?(D), Xy ~ x?(N), be two independent x?. Define

Hpn(x) = ]E(;(D) x E [(XD—X)I(\'IV>J, x>0

Definition
To each S, with Dy, < n— 1, we associate a weight L, > 0 and
the penalty

1.1N _ _
pen(m) = N _n; H o1 N1 (e L'") where N = n — D




Theorem

Let {Sn, m e M} be a collection of models and {Lm,, m € M}
a family of weights. Assume that Ny, > 7 and Dy, V Ly < n/2
for all m € M. Define

m= argmmeijr\ll 1Y — fiml? <1 o

mdm»

n— Dp

The estimator i, satisfies

~ (B
DXE(I“’ /21’m>
o
.2
E<N $w|>+Lm

< inf
meM

+ > (Dm+1)e "

meM




Ordered variable selection

Forme My, m={1,...,D},

— > (Dm+1)etn<251
mem

If |/m| < Dmax < [n/2] A p,

a2 a2
E(W)gm i [E<W>v1]
o meM g



Complete Variable selection

For me Mq,

Lm = log [(57')} +2log(|m| + 1)

— Y (Dm+1)e "t <log(p).
meM

If [m] < Dmax < [n/(2log(p))] A P,

~A 12
E Ty
2

(2

) < Ulog(p) inf



Complete Variable selection: order of magnitude
of the penalty

n=32 n=512
— K=t ¢
-- AMDL

penaity
200

penaity
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2000




Comparison with Lasso/Adaptive Lasso

The "Adaptive Lasso” Proposed by Zou(2006).

2
p

9A:argerrel@ +)\Z%x 6]

j=1 ‘9/

p
Y -2 6%
j=1

— )\, 7 obtained by cross-validation




Consider the predictors Xj, ..., Xg € R?® such that for all
i=1,....20

X" = (Xi4,...,Xg,) are i.i.d. N'(0,T) with [; x = 0.504I.
and

n= 3X; +1.5X> +2X5



oc=1
r E(m) %{m=m} %{m>mo}
Our procedure | 1.57 3.34 72% 97.8%
Lasso | 2.09 5.21 10.8% 100%
A.Lasso | 1.99 4.56 16.8% 99%
c=3
r E(m) %{m=m} %{m>mp}
Our procedure | 3.08 2.01 10.3% 15.7
Lasso | 2.06 4.56 10.5% 100%
A.lLasso | 2.44  3.81 13.2 52%




Let X, X5, X3 be three vectors of R"” defined by

X; = ( 1, -1, 0, ..., 0)/v2
X, = (-1, 1001, 0, ..., 0)/V1+1.0012
Xs = ( 1/vV2, 1/vV2, 1/n, ..., 1/n) /\/1+(n—2)/m2

and X; =g forallj=4,... n.
We take p = n = 20, Dnax = 8 and
p=(n,n0,...,0) € Span{ Xy, Xo}.

— u almost L Xj, Xo and very correlated to  Xs.



The result

r E(m) %{m=me} %{m 2 mo)
Our procedure | 2.24  2.19 83.4% 96.2%
Lasso | 285 6 0% 30%
A. Lasso | 298 5 0% 25%




Mixed strategy

Let me M..
Ly = |m| ifme M,

= Iog[<‘5’|>}+log(p(|m|+1)) if me Mg\ Mo

— > (Dp+1)e 't < 3.51

meM
~ 12
E (’MI;M) <
o

= ,&m’2 ; ’M_,&m|2
{mler}&oE< . V1A Iog(p)mler}&cE o AR

N



