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The statistical framework

We observe
Y ∼ N

(
µ, σ2In

)
where both parameters µ ∈ Rn and σ > 0 are unknown.

Our aim: Estimate µ from the observation of Y .
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Example : Variable selection

Y ∼ N
(
µ, σ2In

)
with µ =

p∑
j=1

θjXj .

and p possibly larger than n but expect that∣∣{j , θj 6= 0
}∣∣� n

Our aim: Estimate µ and
{

j , θj 6= 0
}

.
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The estimation strategy: model selection

We start with a collection {Sm, m ∈M} of linear subspaces
(models) of Rn.

Sm −→ µ̂m = ΠSmY

Our aim : select m̂ = m̂(Y ) amongM in such a way

E
[
|µ− µ̂m̂|

2
]

close to inf
m∈M

E
[
|µ− µ̂m|2

]
.
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Variable selection (continued)

Y ∼ N
(
µ, σ2In

)
with µ =

p∑
j=1

θjXj

For m ⊂ {1, . . . ,p}, such that |m| ≤ Dmax < n we set

Sm = Span
{

Xj , j ∈ m
}
.

Ordered variable selection. Take

Mo = {{1, . . . ,D} , D ≤ Dmax} ∪ {∅}

(Almost) complete variable selection. Take

Mc = {m ⊂ P({1, . . . ,p}), |m| ≤ Dmax}
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Some selection criteria

m̂ = argmin
m∈M

(
|Y − µ̂m|2 + pen(m)

)
- Mallows’Cp (1973): pen(m) = 2Dmσ

2 where
Dm = dim(Sm).

- Birgé & Massart (2001): pen(m) = pen(m, σ2).
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Advantages :
- Non-asymptotic theory
- Variable selection: no assumption on the predictors Xj .
- Bayesian flavor : allows (into some extent) to take into

account knowlege/intuition

Drawbacks :
- The computation of m̂ may not feasible ifM is too large
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For the problem of variable selection :
Tibshirani(1996) Lasso :

θ̂λ = argmin
θ∈Rp


∣∣∣∣∣∣Y −

p∑
j=1

θjXj

∣∣∣∣∣∣
2

+ λ |θ|1

.
Candès & Tao (2007) Dantzig selector:

θ̂λ = argmin

|θ|1 , max
j=1,...,p

∣∣∣∣∣∣〈Xj ,Y −
p∑

j ′=1

θj ′Xj ′〉

∣∣∣∣∣∣ ≤ λ


−→ m̂λ =
{

j , θ̂λj 6= 0
}

and µ̂m̂λ =
∑
j∈m̂λ

θ̂λj Xj
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Advantages :
- The computation is feasible even if p is very large
- Non-asymptotic theory

Drawbacks :
- The procedure work under suitable assumptions on the

predictors Xj
- There is no way to check these assumptions if p is very

large
- Blind to knowledge/intuition
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For all these procedures, remains the problem of
estimating σ2 or choosing λ

These parameters depends on the data distribution and
must be estimated
In general, there is no natural estimator of σ2 (complete
variable selection with p > n)
Cross-validation...
The performance of the procedure crucially depends upon
these parameters.
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Other selection criteria

Crit(m) = |Y − µ̂m|2
(

1 +
pen(m)

n − Dm

)
or

Crit′(m) = log
(
|Y − µ̂m|2

)
+

pen′(m)

n

Both criteria are the same if one takes

pen′(m) = n log
(

1 +
pen(m)

n − Dm

)
≈ pen(m)
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Crit(m) = |Y − µ̂m|2
(

1 +
pen(m)

n − Dm

)
or

Crit(m) = log
(
|Y − µ̂m|2

)
+

pen′(m)

n

Akaike(1969) FPE : pen(m) = 2Dm

Akaike(1973) AIC : pen′(m) = 2Dm

Schwarz/Akaike (1978) BIC/SIC : pen′(m) = Dm log(n)

Saito(1994) AMDL : pen′(m) = 3Dm log(n)
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Two questions

1 What can be said about these selection criteria from a
non-asymptotic point of view?

2 Is it possible to propose other penalties that would take into
account the complexity of the collection {Sm, m ∈M}?
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What do we mean by complexity?

We shall say that that the collection {Sm, m ∈M} is a-complex
(with a ≥ 0) if

|{m ∈M, Dm = D}| ≤ eaD ∀D ≥ 1.

For the collection {Sm, m ∈Mo}

|{m ∈M, Dm = D}| ≤ 1 =⇒ a = 0

For the collection {Sm, m ∈Mc}

|{m ∈M, Dm = D}| ≤
(

p
D

)
≤ pD =⇒ a = log(p)
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Penalty choice with regard to complexity

Let φ(x) = (x − 1− log(x))/2 for x ≥ 1.

Consider a a-complex collection {Sm, m ∈M}. If for some
K ,K ′ > 1

K ≤ pen(m)

φ−1(a)Dm
≤ K ′, ∀m ∈M∗

and select

m̂ = argmin
m∈M

|Y − µ̂m|2
(

1 +
pen(m)

n − Dm

)
then

E
[
|µ−µ̂m̂|

2

σ2

]
infm∈M E

[
|µ−µ̂m|2
σ2

]
∨ 1

≤ C(K )K ′ φ−1(a)
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Case of ordered variable selection

a = 0, φ−1(a) = 1. For all m ∈M such that Dm 6= 0

1 < K ≤ pen(m)

Dm
≤ K ′

one has
E
[
|µ−µ̂m̂|

2

σ2

]
infm∈M E

[
|µ−µ̂m|2
σ2

]
∨ 1

≤ C(K )K ′

−→ FPE and AIC (for n large enough)
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Case of the complete variable selection with p = n

a = log(n), φ−1(a) ≈ 2 log(n). If for all m ∈M such that Dm 6= 0

1 < K ≤ pen(m)

2Dm log(n)
≤ K ′

then
E
[
|µ−µ̂m̂|

2

σ2

]
infm∈M E

[
|µ−µ̂m|2
σ2

]
∨ 1

≤ C(K )K ′ log(n)

−→ AMDL (but not AIC, FPE, BIC)
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New penalties

Definition

Let XD ∼ χ2(D), XN ∼ χ2(N), be two independent χ2. Define

HD,N(x) =
1

E(XD)
× E

[(
XD − x

XN

N

)
+

]
, x ≥ 0

Definition
To each Sm with Dm < n− 1, we associate a weight Lm ≥ 0 and
the penalty

pen(m) =
1.1Nm

Nm − 1
H−1

Dm+1,Nm−1

(
e−Lm

)
where Nm = n − Dm.
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Theorem

Let {Sm, m ∈M} be a collection of models and {Lm, m ∈M}
a family of weights. Assume that Nm ≥ 7 and Dm ∨ Lm ≤ n/2
for all m ∈M. Define

m̂ = argmin
m∈M

|Y − µ̂m|2
(

1 +
pen(m)

n − Dm

)
The estimator µ̂m̂ satisfies

�× E

(
|µ− µ̂m̂|

2

σ2

)

≤ inf
m∈M

[
E

(
|µ− µ̂m|2

σ2

)
+ Lm

]
+
∑

m∈M
(Dm + 1)e−Lm .
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Ordered variable selection

For m ∈Mo, m = {1, . . . ,D},

Lm = |m|
−→

∑
m∈M

(Dm + 1) e−Lm ≤ 2.51

If |m| ≤ Dmax ≤ [n/2] ∧ p,

E

(
|µ− µ̂m̂|

2

σ2

)
≤ � inf

m∈M

[
E

(
|µ− µ̂m|2

σ2

)
∨ 1

]
.
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Complete Variable selection

For m ∈Mc ,

Lm = log
[(

p
|m|

)]
+ 2 log(|m|+ 1)

−→
∑

m∈M
(Dm + 1) e−Lm ≤ log(p).

If |m| ≤ Dmax ≤ [n/(2 log(p))] ∧ p,

E

(
|µ− µ̂m̂|

2

σ2

)
≤ � log(p) inf

m∈M

[
E

(
|µ− µ̂m|2

σ2

)
∨ 1

]
.
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Complete Variable selection: order of magnitude
of the penalty
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Figure: Comparison of the penalty functions penAMDL(D) and pen
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Comparison with Lasso/Adaptive Lasso

The ”Adaptive Lasso” Proposed by Zou(2006).

θ̂λ = argmin
θ∈Rp


∣∣∣∣∣∣Y −

p∑
j=1

θjXj

∣∣∣∣∣∣
2

+ λ

p∑
j=1

1∣∣∣θ̃j

∣∣∣γ ×
∣∣θj
∣∣
.

−→ λ, γ obtained by cross-validation
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Simulation 1

Consider the predictors X1, . . . ,X8 ∈ R20 such that for all
i = 1, . . . ,20

X T
i = (X1,i , . . . ,X8,i) are i.i.d. N (0, Γ) with Γj,k = 0.5|j−k |.

and

µ = 3X1 + 1.5X2 + 2X5
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σ = 1
r E(|m̂|) %{m̂ = m0} %{m̂ ⊇ m0}

Our procedure 1.57 3.34 72% 97.8%
Lasso 2.09 5.21 10.8% 100%

A. Lasso 1.99 4.56 16.8% 99%

σ = 3
r E(|m̂|) %{m̂ = m0} %{m̂ ⊇ m0}

Our procedure 3.08 2.01 10.3% 15.7
Lasso 2.06 4.56 10.5% 100%

A. Lasso 2.44 3.81 13.2 52%
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Simulation 2

Let X1,X2,X3 be three vectors of Rn defined by

X1 = ( 1, −1, 0, . . . , 0) /
√

2
X2 = ( −1, 1.001, 0, . . . , 0) /

√
1 + 1.0012

X3 = ( 1/
√

2, 1/
√

2, 1/n, . . . , 1/n) /
√

1 + (n − 2)/n2

and Xj = ej for all j = 4, . . . ,n.

We take p = n = 20, Dmax = 8 and

µ = (n,n,0, . . . ,0) ∈ Span {X1,X2}.

−→ µ almost ⊥ X1, X2 and very correlated to X3.
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The result

r E(|m̂|) %{m̂ = m0} %{m̂ ⊇ m0}
Our procedure 2.24 2.19 83.4% 96.2%

Lasso 285 6 0% 30%
A. Lasso 298 5 0% 25%
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Mixed strategy

Let m ∈Mc .

Lm = |m| if m ∈Mo

= log
[(

p
|m|

)]
+ log(p(|m|+ 1)) if m ∈Mc \Mo

−→
∑

m∈M
(Dm + 1)e−Lm ≤ 3.51

�E

(
|µ− µ̂m̂|

2

σ2

)
≤{

inf
m∈Mo

E

(
|µ− µ̂m|2

σ2

)
∨ 1

}
∧

{
log(p) inf

m∈Mc
E

(
|µ− µ̂m|2

σ2

)
∨ 1

}
.


