Gaussian model selection with an unknown variance

Yannick Baraud

Laboratoire J.A. Dieudonné Université de Nice Sophia Antipolis baraud@unice.fr

Joint work with C. Giraud and S. Huet

The statistical framework

We observe

$$
Y \sim \mathcal{N}\left(\mu, \sigma^{2} I_{n}\right)
$$

where both parameters $\mu \in \mathbb{R}^{n}$ and $\sigma>0$ are unknown.

Our aim: Estimate μ from the observation of Y.

Example : Variable selection

$$
Y \sim \mathcal{N}\left(\mu, \sigma^{2} I_{n}\right) \text { with } \mu=\sum_{j=1}^{p} \theta_{j} X_{j}
$$

and p possibly larger than n but expect that

$$
\left|\left\{j, \theta_{j} \neq 0\right\}\right| \ll n
$$

Our aim: Estimate μ and $\left\{j, \theta_{j} \neq 0\right\}$.

The estimation strategy: model selection

We start with a collection $\left\{S_{m}, m \in \mathcal{M}\right\}$ of linear subspaces (models) of \mathbb{R}^{n}.

$$
S_{m} \longrightarrow \hat{\mu}_{m}=\Pi_{S_{m}} Y
$$

Our aim : select $\hat{m}=\hat{m}(Y)$ among \mathcal{M} in such a way

$$
\mathbb{E}\left[\left|\mu-\hat{\mu}_{\hat{m}}\right|^{2}\right] \text { close to } \inf _{m \in \mathcal{M}} \mathbb{E}\left[\left|\mu-\hat{\mu}_{m}\right|^{2}\right] .
$$

Variable selection (continued)

$$
Y \sim \mathcal{N}\left(\mu, \sigma^{2} I_{n}\right) \text { with } \mu=\sum_{j=1}^{p} \theta_{j} X_{j}
$$

For $m \subset\{1, \ldots, p\}$, such that $|m| \leq D_{\text {max }}<n$ we set

$$
S_{m}=\operatorname{Span}\left\{X_{j}, j \in m\right\} .
$$

- Ordered variable selection. Take

$$
\mathcal{M}_{0}=\left\{\{1, \ldots, D\}, D \leq D_{\max }\right\} \cup\{\varnothing\}
$$

- (Almost) complete variable selection. Take

$$
\mathcal{M}_{c}=\left\{m \subset \mathcal{P}(\{1, \ldots, p\}),|m| \leq D_{\max }\right\}
$$

Some selection criteria

$$
\hat{m}=\operatorname{argmin}_{m \in \mathcal{M}}\left(\left|Y-\hat{\mu}_{m}\right|^{2}+\operatorname{pen}(m)\right)
$$

- Mallows' C_{p} (1973): $\operatorname{pen}(m)=2 D_{m} \sigma^{2}$ where $D_{m}=\operatorname{dim}\left(S_{m}\right)$.
- Birgé \& Massart (2001): $\operatorname{pen}(m)=\operatorname{pen}\left(m, \sigma^{2}\right)$.
- Advantages:
- Non-asymptotic theory
- Variable selection: no assumption on the predictors X_{j}.
- Bayesian flavor : allows (into some extent) to take into account knowlege/intuition
- Drawbacks:
- The computation of \hat{m} may not feasible if \mathcal{M} is too large

For the problem of variable selection :

- Tibshirani(1996) Lasso :

$$
\hat{\theta}^{\lambda}=\underset{\theta \in \mathbb{R}^{p}}{\operatorname{argmin}}\left\{\left|Y-\sum_{j=1}^{p} \theta_{j} X_{j}\right|^{2}+\lambda|\theta|_{1}\right\} .
$$

- Candès \& Tao (2007) Dantzig selector:

$$
\begin{aligned}
& \hat{\theta}^{\lambda}=\operatorname{argmin}\left\{|\theta|_{1}, \max _{j=1, \ldots, p}\left|\left\langle X_{j}, Y-\sum_{j^{\prime}=1}^{p} \theta_{j^{\prime}} X_{j^{\prime}}\right\rangle\right| \leq \lambda\right\} \\
& \longrightarrow \hat{m}^{\lambda}=\left\{j, \hat{\theta}_{j}^{\lambda} \neq 0\right\} \text { and } \hat{\mu}_{\hat{m}^{\lambda}}=\sum_{j \in \hat{m}^{\lambda}} \hat{\theta}_{j}^{\lambda} X_{j}
\end{aligned}
$$

- Advantages:
- The computation is feasible even if p is very large
- Non-asymptotic theory
- Drawbacks:
- The procedure work under suitable assumptions on the predictors X_{j}
- There is no way to check these assumptions if p is very large
- Blind to knowledge/intuition

For all these procedures, remains the problem of estimating σ^{2} or choosing λ

- These parameters depends on the data distribution and must be estimated
- In general, there is no natural estimator of σ^{2} (complete variable selection with $p>n$)
- Cross-validation...
- The performance of the procedure crucially depends upon these parameters.

Other selection criteria

$$
\begin{aligned}
\operatorname{Crit}(m)= & \left|Y-\hat{\mu}_{m}\right|^{2}\left(1+\frac{\operatorname{pen}(m)}{n-D_{m}}\right) \\
& \text { or } \\
\operatorname{Crit}^{\prime}(m)= & \log \left(\left|Y-\hat{\mu}_{m}\right|^{2}\right)+\frac{\operatorname{pen}^{\prime}(m)}{n}
\end{aligned}
$$

Both criteria are the same if one takes

$$
\operatorname{pen}^{\prime}(m)=n \log \left(1+\frac{\operatorname{pen}(m)}{n-D_{m}}\right) \approx \operatorname{pen}(m)
$$

$$
\begin{aligned}
\operatorname{Crit}(m)= & \left|Y-\hat{\mu}_{m}\right|^{2}\left(1+\frac{\operatorname{pen}(m)}{n-D_{m}}\right) \\
& \text { or } \\
\operatorname{Crit}(m)= & \log \left(\left|Y-\hat{\mu}_{m}\right|^{2}\right)+\frac{\operatorname{pen}^{\prime}(m)}{n}
\end{aligned}
$$

- Akaike(1969) FPE : pen $(m)=2 D_{m}$
- Akaike(1973) AIC : $\operatorname{pen}^{\prime}(m)=2 D_{m}$
- Schwarz/Akaike (1978) BIC/SIC : $\operatorname{pen}^{\prime}(m)=D_{m} \log (n)$
- Saito(1994) AMDL : $\operatorname{pen}^{\prime}(m)=3 D_{m} \log (n)$

Two questions

(1) What can be said about these selection criteria from a non-asymptotic point of view?
(2) Is it possible to propose other penalties that would take into account the complexity of the collection $\left\{S_{m}, m \in \mathcal{M}\right\}$?

What do we mean by complexity?

We shall say that that the collection $\left\{S_{m}, m \in \mathcal{M}\right\}$ is a-complex (with $a \geq 0$) if

$$
\left|\left\{m \in \mathcal{M}, D_{m}=D\right\}\right| \leq e^{a D} \quad \forall D \geq 1
$$

- For the collection $\left\{S_{m}, m \in \mathcal{M}_{0}\right\}$

$$
\left|\left\{m \in \mathcal{M}, D_{m}=D\right\}\right| \leq 1 \quad \Longrightarrow a=0
$$

- For the collection $\left\{S_{m}, m \in \mathcal{M}_{c}\right\}$

$$
\left|\left\{m \in \mathcal{M}, D_{m}=D\right\}\right| \leq\binom{ p}{D} \leq p^{D} \Longrightarrow a=\log (p)
$$

Penalty choice with regard to complexity

Let $\phi(x)=(x-1-\log (x)) / 2$ for $x \geq 1$.
Consider a a-complex collection $\left\{S_{m}, m \in \mathcal{M}\right\}$. If for some $K, K^{\prime}>1$

$$
K \leq \frac{\operatorname{pen}(m)}{\phi^{-1}(a) D_{m}} \leq K^{\prime}, \quad \forall m \in \mathcal{M}^{*}
$$

and select

$$
\hat{m}=\operatorname{argmin}_{m \in \mathcal{M}}\left|Y-\hat{\mu}_{m}\right|^{2}\left(1+\frac{\operatorname{pen}(m)}{n-D_{m}}\right)
$$

then

$$
\frac{\mathbb{E}\left[\frac{\left|\mu-\hat{\mu}_{\hat{\mu}}\right|^{2}}{\sigma^{2}}\right]}{\inf _{m \in \mathcal{M}} \mathbb{E}\left[\frac{\left|\mu-\hat{\mu}_{m}\right|^{2}}{\sigma^{2}}\right] \vee 1} \leq C(K) K^{\prime} \phi^{-1}(a)
$$

Case of ordered variable selection

$a=0, \phi^{-1}(a)=1$. For all $m \in \mathcal{M}$ such that $D_{m} \neq 0$

$$
1<K \leq \frac{\operatorname{pen}(m)}{D_{m}} \leq K^{\prime}
$$

one has

$$
\frac{\mathbb{E}\left[\frac{\left|\mu-\hat{\mu}_{\hat{m}}\right|^{2}}{\sigma^{2}}\right]}{\inf _{m \in \mathcal{M}} \mathbb{E}\left[\frac{\left|\mu-\hat{\mu}_{m}\right|^{2}}{\sigma^{2}}\right] \vee 1} \leq C(K) K^{\prime}
$$

\longrightarrow FPE and AIC (for n large enough)

Case of the complete variable selection with $p=n$

$a=\log (n), \phi^{-1}(a) \approx 2 \log (n)$. If for all $m \in \mathcal{M}$ such that $D_{m} \neq 0$

$$
1<K \leq \frac{\operatorname{pen}(m)}{2 D_{m} \log (n)} \leq K^{\prime}
$$

then

$$
\frac{\mathbb{E}\left[\frac{\left|\mu-\hat{\mu}_{\hat{m}}\right|^{2}}{\sigma^{2}}\right]}{\inf _{m \in \mathcal{M}} \mathbb{E}\left[\frac{\left|\mu-\hat{\mu}_{m}\right|^{2}}{\sigma^{2}}\right] \vee 1} \leq C(K) K^{\prime} \log (n)
$$

\longrightarrow AMDL (but not AIC, FPE, BIC)

New penalties

Definition

Let $X_{D} \sim \chi^{2}(D), X_{N} \sim \chi^{2}(N)$, be two independent χ^{2}. Define

$$
\mathcal{H}_{D, N}(x)=\frac{1}{\mathbb{E}\left(X_{D}\right)} \times \mathbb{E}\left[\left(X_{D}-x \frac{X_{N}}{N}\right)_{+}\right], x \geq 0
$$

Definition

To each S_{m} with $D_{m}<n-1$, we associate a weight $L_{m} \geq 0$ and the penalty

$$
\operatorname{pen}(m)=\frac{1.1 N_{m}}{N_{m}-1} \mathcal{H}_{D_{m}+1, N_{m}-1}^{-1}\left(e^{-L_{m}}\right) \text { where } N_{m}=n-D_{m}
$$

Theorem

Let $\left\{S_{m}, m \in \mathcal{M}\right\}$ be a collection of models and $\left\{L_{m}, m \in \mathcal{M}\right\}$ a family of weights. Assume that $N_{m} \geq 7$ and $D_{m} \vee L_{m} \leq n / 2$ for all $m \in \mathcal{M}$. Define

$$
\hat{m}=\operatorname{argmin}_{m \in \mathcal{M}}\left|Y-\hat{\mu}_{m}\right|^{2}\left(1+\frac{\operatorname{pen}(m)}{n-D_{m}}\right)
$$

The estimator $\hat{\mu}_{\hat{m}}$ satisfies

$$
\begin{aligned}
\square & \times \mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{\hat{m}}\right|^{2}}{\sigma^{2}}\right) \\
& \leq \inf _{m \in \mathcal{M}}\left[\mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{m}\right|^{2}}{\sigma^{2}}\right)+L_{m}\right]+\sum_{m \in \mathcal{M}}\left(D_{m}+1\right) e^{-L_{m}} .
\end{aligned}
$$

Ordered variable selection

For $m \in \mathcal{M}_{o}, m=\{1, \ldots, D\}$,

$$
\begin{aligned}
& L_{m}=|m| \\
& \quad \longrightarrow \sum_{m \in \mathcal{M}}\left(D_{m}+1\right) e^{-L_{m}} \leq 2.51
\end{aligned}
$$

If $|m| \leq D_{\max } \leq[n / 2] \wedge p$,

$$
\mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{\hat{m}}\right|^{2}}{\sigma^{2}}\right) \leq \square \inf _{m \in \mathcal{M}}\left[\mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{m}\right|^{2}}{\sigma^{2}}\right) \vee 1\right] .
$$

Complete Variable selection

For $m \in \mathcal{M}_{c}$,

$$
\begin{aligned}
L_{m} & =\log \left[\binom{p}{|m|}\right]+2 \log (|m|+1) \\
& \longrightarrow \sum_{m \in \mathcal{M}}\left(D_{m}+1\right) e^{-L_{m}} \leq \log (p)
\end{aligned}
$$

If $|m| \leq D_{\max } \leq[n /(2 \log (p))] \wedge p$,

$$
\mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{\hat{m}}\right|^{2}}{\sigma^{2}}\right) \leq \square \log (p) \inf _{m \in \mathcal{M}}\left[\mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{m}\right|^{2}}{\sigma^{2}}\right) \vee 1\right]
$$

Complete Variable selection: order of magnitude of the penalty

Comparison with Lasso/Adaptive Lasso

The "Adaptive Lasso" Proposed by Zou(2006).

$$
\begin{aligned}
\hat{\theta}^{\lambda}= & \operatorname{argmin}_{\theta \in \mathbb{R}^{p}}\left\{\left|Y-\sum_{j=1}^{p} \theta_{j} X_{j}\right|^{2}+\lambda \sum_{j=1}^{p} \frac{1}{\left|\tilde{\theta}_{j}\right|^{\gamma}} \times\left|\theta_{j}\right|\right\} . \\
& \longrightarrow \lambda, \gamma \text { obtained by cross-validation }
\end{aligned}
$$

Simulation 1

Consider the predictors $X_{1}, \ldots, X_{8} \in \mathbb{R}^{20}$ such that for all $i=1, \ldots, 20$

$$
X_{i}^{T}=\left(X_{1, i}, \ldots, X_{8, i}\right) \text { are i.i.d. } \mathcal{N}(0, \Gamma) \text { with } \Gamma_{j, k}=0.5^{|j-k|} .
$$

and

$$
\mu=3 X_{1}+1.5 X_{2}+2 X_{5}
$$

	$\sigma=1$			
	r	$\mathbb{E}(\|\widehat{m}\|)$	$\%\left\{\hat{m}=m_{0}\right\}$	$\%\left\{\widehat{m} \supseteq m_{0}\right\}$
Our procedure	1.57	3.34	72\%	97.8\%
Lasso	2.09	5.21	10.8\%	100\%
A. Lasso	1.99	4.56	16.8\%	99\%

	$\sigma=3$			
	r	$\mathbb{E}(\|\widehat{m}\|)$	$\%\left\{\widehat{m}=m_{0}\right\}$	$\%\left\{\widehat{m} \supseteq m_{0}\right\}$
Our procedure	3.08	2.01	10.3%	15.7
Lasso	2.06	4.56	10.5%	100%
A. Lasso	2.44	3.81	13.2	52%

Simulation 2

Let X_{1}, X_{2}, X_{3} be three vectors of \mathbb{R}^{n} defined by

$$
\begin{aligned}
& \left.\begin{array}{l}
X_{1}=(
\end{array} \quad 1, \quad-1, \quad 0, \ldots, \quad 0\right) / \sqrt{2} . \\
& x_{3}=(1 / \sqrt{2}, 1 / \sqrt{2}, 1 / n, \ldots, 1 / n) / \sqrt{1+(n-2) / n^{2}}
\end{aligned}
$$

and $X_{j}=e_{j}$ for all $j=4, \ldots, n$.
We take $p=n=20, D_{\text {max }}=8$ and

$$
\mu=(n, n, 0, \ldots, 0) \in \operatorname{Span}\left\{X_{1}, X_{2}\right\} .
$$

$\longrightarrow \mu$ almost $\perp X_{1}, X_{2}$ and very correlated to X_{3}.

The result

	r	$\mathbb{E}(\|\hat{m}\|)$	$\%\left\{\hat{m}=m_{0}\right\}$	$\%\left\{\hat{m} \supseteq m_{0}\right\}$
Our procedure	2.24	2.19	83.4%	96.2%
Lasso	285	6	0%	30%
A. Lasso	298	5	0%	25%

Mixed strategy

Let $m \in \mathcal{M}_{c}$.

$$
\begin{aligned}
L_{m}= & |m| \text { if } m \in \mathcal{M}_{0} \\
= & \log \left[\binom{p}{|m|}\right]+\log (p(|m|+1)) \quad \text { if } m \in \mathcal{M}_{c} \backslash \mathcal{M}_{0} \\
& \longrightarrow \sum_{m \in \mathcal{M}}\left(D_{m}+1\right) e^{-L_{m}} \leq 3.51
\end{aligned}
$$

$\square \mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{\hat{m}}\right|^{2}}{\sigma^{2}}\right) \leq$
$\left\{\inf _{m \in \mathcal{M}_{0}} \mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{m}\right|^{2}}{\sigma^{2}}\right) \vee 1\right\} \wedge\left\{\log (p) \inf _{m \in \mathcal{M}_{c}} \mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{m}\right|^{2}}{\sigma^{2}}\right) \vee 1\right\}$.

