Gaussian model selection with an unknown variance

Yannick Baraud

Laboratoire J.A. Dieudonné Université de Nice Sophia Antipolis baraud@unice.fr

Joint work with C. Giraud and S. Huet

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The statistical framework

We observe

$$\mathbf{Y} \sim \mathcal{N}\left(\boldsymbol{\mu}, \sigma^{2} \boldsymbol{I}_{n}\right)$$

where both parameters $\mu \in \mathbb{R}^n$ and $\sigma > 0$ are unknown.

Our aim: Estimate μ from the observation of *Y*.

Example : Variable selection

$$\mathbf{Y} \sim \mathcal{N}\left(\mu, \sigma^2 I_n\right)$$
 with $\mu = \sum_{j=1}^{p} \theta_j X_j$.

and *p* possibly larger than *n* but expect that

$$\left|\left\{j, \ \theta_{j} \neq 0\right\}\right| \ll n$$

(日) (日) (日) (日) (日) (日) (日)

Our aim: Estimate μ and $\{j, \theta_j \neq 0\}$.

The estimation strategy: model selection

We start with a collection $\{S_m, m \in \mathcal{M}\}$ of linear subspaces (models) of \mathbb{R}^n .

 $S_m \longrightarrow \hat{\mu}_m = \prod_{S_m} Y$

Our aim : select $\hat{m} = \hat{m}(Y)$ among \mathcal{M} in such a way

$$\mathbb{E}\left[\left|\mu-\hat{\mu}_{\hat{m}}\right|^{2}\right]$$
 close to $\inf_{m\in\mathcal{M}}\mathbb{E}\left[\left|\mu-\hat{\mu}_{m}\right|^{2}\right]$

(日) (日) (日) (日) (日) (日) (日)

Variable selection (continued)

$$\mathbf{Y} \sim \mathcal{N}\left(\mu, \sigma^2 I_n\right)$$
 with $\mu = \sum_{j=1}^{p} \theta_j X_j$

For $m \subset \{1, \ldots, p\}$, such that $|m| \leq D_{\max} < n$ we set

 $S_m = \operatorname{Span} \{X_j, j \in m\}.$

Ordered variable selection. Take

 $\mathcal{M}_{o} = \left\{ \left\{ 1, \dots, D \right\}, \ D \leq D_{max} \right\} \cup \left\{ \varnothing \right\}$

(Almost) complete variable selection. Take

 $\mathcal{M}_{c} = \{ m \subset \mathcal{P}(\{1, \dots, p\}), |m| \leq D_{\max} \}$

(ロ) (同) (三) (三) (三) (○) (○)

Some selection criteria

$$\hat{m} = \operatorname*{argmin}_{m \in \mathcal{M}} \left(|Y - \hat{\mu}_m|^2 + \operatorname{pen}(m) \right)$$

- Mallows' C_p (1973): pen $(m) = 2D_m \sigma^2$ where $D_m = \dim(S_m)$.
- Birgé & Massart (2001): $pen(m) = pen(m, \sigma^2)$.

• Advantages :

- Non-asymptotic theory
- Variable selection: no assumption on the predictors X_i .
- Bayesian flavor : allows (into some extent) to take into account knowlege/intuition

• Drawbacks :

- The computation of \hat{m} may not feasible if \mathcal{M} is too large

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

For the problem of variable selection :

• Tibshirani(1996) Lasso :

$$\hat{\theta}^{\lambda} = \operatorname*{argmin}_{\theta \in \mathbb{R}^{p}} \left\{ \left| Y - \sum_{j=1}^{p} \theta_{j} X_{j} \right|^{2} + \lambda \left| \theta \right|_{1} \right\}.$$

• Candès & Tao (2007) Dantzig selector:

$$\hat{\theta}^{\lambda} = \operatorname{argmin} \left\{ \left| \theta \right|_{1}, \max_{j=1,\dots,p} \left| \langle X_{j}, Y - \sum_{j'=1}^{p} \theta_{j'} X_{j'} \rangle \right| \le \lambda \right\}$$
$$\longrightarrow \quad \hat{m}^{\lambda} = \left\{ j, \ \hat{\theta}_{j}^{\lambda} \neq 0 \right\} \quad \text{and} \quad \hat{\mu}_{\hat{m}^{\lambda}} = \sum_{j \in \hat{m}^{\lambda}} \hat{\theta}_{j}^{\lambda} X_{j}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Advantages :

- The computation is feasible even if p is very large
- Non-asymptotic theory

• Drawbacks :

- The procedure work under suitable assumptions on the predictors *X_i*
- There is no way to check these assumptions if *p* is very large

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Blind to knowledge/intuition

For all these procedures, remains the problem of estimating σ^2 or choosing λ

- These parameters depends on the data distribution and must be estimated
- In general, there is no natural estimator of σ² (complete variable selection with p > n)
- Cross-validation...
- The performance of the procedure crucially depends upon these parameters.

(日) (日) (日) (日) (日) (日) (日)

Other selection criteria

$$\operatorname{Crit}(m) = |Y - \hat{\mu}_m|^2 \left(1 + \frac{\operatorname{pen}(m)}{n - D_m}\right)$$

or
$$\operatorname{Crit}'(m) = \log\left(|Y - \hat{\mu}_m|^2\right) + \frac{\operatorname{pen}'(m)}{n}$$

Both criteria are the same if one takes

$$\operatorname{pen}'(m) = n \log \left(1 + \frac{\operatorname{pen}(m)}{n - D_m}\right) \approx \operatorname{pen}(m)$$

$$\operatorname{Crit}(m) = |Y - \hat{\mu}_m|^2 \left(1 + \frac{\operatorname{pen}(m)}{n - D_m}\right)$$

or
$$\operatorname{Crit}(m) = \log\left(|Y - \hat{\mu}_m|^2\right) + \frac{\operatorname{pen}'(m)}{n}$$

- Akaike(1969) FPE : $pen(m) = 2D_m$
- Akaike(1973) AIC : pen'(m) = 2D_m
- Schwarz/Akaike (1978) BIC/SIC : $pen'(m) = D_m \log(n)$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• Saito(1994) AMDL : $pen'(m) = 3D_m \log(n)$

Two questions

What can be said about these selection criteria from a non-asymptotic point of view?

② Is it possible to propose other penalties that would take into account the complexity of the collection $\{S_m, m \in M\}$?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

What do we mean by complexity?

We shall say that the collection $\{S_m, m \in \mathcal{M}\}$ is *a*-complex (with $a \ge 0$) if

 $|\{m \in \mathcal{M}, D_m = D\}| \le e^{aD} \quad \forall D \ge 1.$

• For the collection $\{S_m, m \in \mathcal{M}_o\}$

 $|\{m \in \mathcal{M}, D_m = D\}| \leq 1 \implies a = 0$

• For the collection $\{S_m, m \in \mathcal{M}_c\}$

$$|\{m \in \mathcal{M}, D_m = D\}| \leq \binom{p}{D} \leq p^D \implies a = \log(p)$$

Penalty choice with regard to complexity

Let $\phi(x) = (x - 1 - \log(x))/2$ for $x \ge 1$.

Consider a *a*-complex collection $\{S_m, m \in \mathcal{M}\}$. If for some K, K' > 1

$$K \leq \frac{\operatorname{pen}(m)}{\phi^{-1}(a)D_m} \leq K', \ \forall m \in \mathcal{M}^*$$

and select

$$\hat{m} = \operatorname*{argmin}_{m \in \mathcal{M}} |Y - \hat{\mu}_m|^2 \left(1 + \frac{\mathrm{pen}(m)}{n - D_m}\right)$$

then

$$\frac{\mathbb{E}\left[\frac{|\mu-\hat{\mu}_{\hat{m}}|^2}{\sigma^2}\right]}{\inf_{m\in\mathcal{M}}\mathbb{E}\left[\frac{|\mu-\hat{\mu}_{m}|^2}{\sigma^2}\right]\vee 1} \leq C(K)K' \phi^{-1}(a)$$

Case of ordered variable selection

 $a = 0, \phi^{-1}(a) = 1$. For all $m \in \mathcal{M}$ such that $D_m \neq 0$

$$1 < K \leq \frac{\operatorname{pen}(m)}{D_m} \leq K'$$

one has

$$\frac{\mathbb{E}\left[\frac{|\mu-\hat{\mu}_{\hat{m}}|^2}{\sigma^2}\right]}{\inf_{m\in\mathcal{M}}\mathbb{E}\left[\frac{|\mu-\hat{\mu}_m|^2}{\sigma^2}\right]\vee 1} \leq C(K)K'$$

 \longrightarrow FPE and AIC (for *n* large enough)

Case of the complete variable selection with p = n

 $a = \log(n), \phi^{-1}(a) \approx 2\log(n)$. If for all $m \in \mathcal{M}$ such that $D_m \neq 0$

$$1 < K \leq \frac{\operatorname{pen}(m)}{2D_m \log(n)} \leq K'$$

then

$$\frac{\mathbb{E}\left[\frac{|\mu-\hat{\mu}_{\hat{m}}|^2}{\sigma^2}\right]}{\inf_{m\in\mathcal{M}}\mathbb{E}\left[\frac{|\mu-\hat{\mu}_{m}|^2}{\sigma^2}\right]\vee 1} \leq C(\mathcal{K})\mathcal{K}'\log(n)$$

 \longrightarrow AMDL (but not AIC, FPE, BIC)

New penalties

Definition

Let $X_D \sim \chi^2(D)$, $X_N \sim \chi^2(N)$, be two independent χ^2 . Define

$$\mathcal{H}_{D,N}(x) = \frac{1}{\mathbb{E}(X_D)} \times \mathbb{E}\left[\left(X_D - x \frac{X_N}{N}\right)_+\right], \ x \ge 0$$

Definition

To each S_m with $D_m < n-1$, we associate a weight $L_m \ge 0$ and the penalty

pen(m) =
$$\frac{1.1 N_m}{N_m - 1} \mathcal{H}_{D_m + 1, N_m - 1}^{-1} \left(e^{-L_m} \right)$$
 where $N_m = n - D_m$.

Theorem

Let $\{S_m, m \in \mathcal{M}\}\$ be a collection of models and $\{L_m, m \in \mathcal{M}\}\$ a family of weights. Assume that $N_m \ge 7$ and $D_m \lor L_m \le n/2$ for all $m \in \mathcal{M}$. Define

$$\hat{m} = \operatorname*{argmin}_{m \in \mathcal{M}} |Y - \hat{\mu}_m|^2 \left(1 + \frac{\operatorname{pen}(m)}{n - D_m}\right)$$

The estimator $\hat{\mu}_{\hat{m}}$ satisfies

$$egin{aligned} &\square imes \mathbb{E}\left(rac{|\mu-\hat{\mu}_{\hat{m}}|^2}{\sigma^2}
ight) \ &\leq \inf_{m\in\mathcal{M}}\left[\mathbb{E}\left(rac{|\mu-\hat{\mu}_m|^2}{\sigma^2}
ight)+L_m
ight]+\sum_{m\in\mathcal{M}}(D_m+1)e^{-L_m}. \end{aligned}$$

Ordered variable selection

For $m \in \mathcal{M}_o$, $m = \{1, \ldots, D\}$,

$$L_m = |m|$$

 $\longrightarrow \sum_{m \in \mathcal{M}} (D_m + 1) e^{-L_m} \le 2.51$

If $|m| \leq D_{\max} \leq [n/2] \wedge p$, $\mathbb{E}\left(\frac{|\mu - \hat{\mu}_{\hat{m}}|^2}{\sigma^2}\right) \leq \Box \inf_{m \in \mathcal{M}} \left[\mathbb{E}\left(\frac{|\mu - \hat{\mu}_m|^2}{\sigma^2}\right) \vee 1\right].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Complete Variable selection

For $m \in \mathcal{M}_c$,

$$L_m = \log \left[\begin{pmatrix} p \\ |m| \end{pmatrix}
ight] + 2 \log(|m| + 1)$$

 $\longrightarrow \sum_{m \in \mathcal{M}} (D_m + 1) e^{-L_m} \leq \log(p).$

 $\mathsf{lf} \; |\mathit{m}| \leq \mathit{D}_{\mathsf{max}} \leq [\mathit{n}/(2 \log(p))] \land \mathit{p},$

$$\mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{\hat{m}}\right|^{2}}{\sigma^{2}}\right) \leq \Box \log(\rho) \inf_{m \in \mathcal{M}} \left[\mathbb{E}\left(\frac{\left|\mu-\hat{\mu}_{m}\right|^{2}}{\sigma^{2}}\right) \vee 1\right].$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Complete Variable selection: order of magnitude of the penalty

900

Comparison with Lasso/Adaptive Lasso

The "Adaptive Lasso" Proposed by Zou(2006).

$$\hat{\theta}^{\lambda} = \arg\min_{\theta \in \mathbb{R}^{p}} \left\{ \left| Y - \sum_{j=1}^{p} \theta_{j} X_{j} \right|^{2} + \lambda \sum_{j=1}^{p} \frac{1}{\left| \tilde{\theta}_{j} \right|^{\gamma}} \times \left| \theta_{j} \right| \right\}.$$

$$\longrightarrow \lambda, \gamma \text{ obtained by cross-validation}$$

(日) (日) (日) (日) (日) (日) (日)

Simulation 1

Consider the predictors $X_1, \ldots, X_8 \in \mathbb{R}^{20}$ such that for all $i = 1, \ldots, 20$ $X_i^T = (X_{1,i}, \ldots, X_{8,i})$ are i.i.d. $\mathcal{N}(0, \Gamma)$ with $\Gamma_{j,k} = 0.5^{|j-k|}$. and

 $\mu = 3X_1 + 1.5X_2 + 2X_5$

	$\sigma = 1$			
	r	$\mathbb{E}(\widehat{m})$	$\%{\widehat{m}=m_0}$	${}^{\&}{\{\widehat{m} \supseteq m_0\}}$
Our procedure	1.57	3.34	72%	97.8%
Lasso	2.09	5.21	10.8%	100%
A. Lasso	1.99	4.56	16.8%	99%

			$\sigma = 3$	
	r	$\mathbb{E}(\widehat{m})$	$\%{\widehat{m}=m_0}$	${}^{\&}{\{\widehat{m}\supseteq m_0\}}$
Our procedure	3.08	2.01	10.3%	15.7
Lasso	2.06	4.56	10.5%	100%
A. Lasso	2.44	3.81	13.2	52%

Simulation 2

Let X_1, X_2, X_3 be three vectors of \mathbb{R}^n defined by

and $X_j = e_j$ for all $j = 4, \ldots, n$.

We take p = n = 20, $D_{max} = 8$ and

 $\mu = (n, n, 0, \dots, 0) \in \text{Span} \{X_1, X_2\}.$

 $\longrightarrow \mu$ almost $\perp X_1, X_2$ and very correlated to X_3 .

(日) (日) (日) (日) (日) (日) (日)

The result

	r	$\mathbb{E}(\widehat{m})$	$\%{\widehat{m}=m_0}$	${}^{\&}{\{\widehat{m}\supseteq m_0\}}$
Our procedure	2.24	2.19	83.4%	96.2%
Lasso	285	6	0%	30%
A. Lasso	298	5	0%	25%

Mixed strategy

Let $m \in \mathcal{M}_c$.

$$L_m = |m| \text{ if } m \in \mathcal{M}_o$$

= $\log \left[\begin{pmatrix} p \\ |m| \end{pmatrix} \right] + \log(p(|m|+1)) \text{ if } m \in \mathcal{M}_c \setminus \mathcal{M}_o$
 $\longrightarrow \sum_{m \in \mathcal{M}} (D_m + 1)e^{-L_m} \leq 3.51$

$$\Box \mathbb{E}\left(\frac{|\mu - \hat{\mu}_{\hat{m}}|^{2}}{\sigma^{2}}\right) \leq \left\{\inf_{m \in \mathcal{M}_{o}} \mathbb{E}\left(\frac{|\mu - \hat{\mu}_{m}|^{2}}{\sigma^{2}}\right) \vee 1\right\} \wedge \left\{\log(p)\inf_{m \in \mathcal{M}_{c}} \mathbb{E}\left(\frac{|\mu - \hat{\mu}_{m}|^{2}}{\sigma^{2}}\right) \vee 1\right\}.$$