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Multivariate Linear Model

Y =CM + E, where

the rows of n X d matrix Y are d-variate responses;
the n x p design matrix C' has rank p < n;

the p x d matrix M is unknown,;

the n x d error matrix £ = VX2, where X is an unknown p.d.
covariance matrix and the elements of V' are iid with mean 0,
variance 1, and finite 4-th moment.

The least squares estimator of M Is MZS = (C7Y.

Let y = vec(Y), m = vec(M), e = vec(E) and C = I, ® C.
The vectorized model asserts y = Cm + e.
The least squares estimator of m is 1y, = Cty = vec(M;).

For now, assume > = 1.



Quadratic Loss and Risk

Let 77 be any estimator of n = Cm = E(y).

The loss of nis L(7,n) = p~ ! — n|* and the corresponding
risk is R(n,n) = EL(n,n). Equivalently, these are loss and risk
functions on estimators of m through the 1-to-1 map n = Cin.
The least squares estimator 7, = Crys = CCty has risk
R(mis,n) = d.

Biased estimators of n can reduce risk substantially: Stein
(1956), James and Stein (1961), Stein (1966); also papers
on symmetric linear estimators such as Stein (1981), Li and
Hwang (1984), Buja, Hastie and Tibshirani (1989), Kneip
(1994), Beran (2007) ...

Penalized least squares (PLS) generates promising, biased,

candidate symmetric linear estimators of 7.



General Structure of PLS for the Multivariate Linear Model
Let S be an index set of fixed cardinality.

Let {Qs:s € S} be p x p p.s.d. penalty matrices.

N ={Ns:s € §} be d x d p.s.d. affine penalty weights.

PLS criterion: G(m,N) = |y — Cm|> + m'Q(N)m,
where Q(N) = > cs(Ns ® Q) -

The PLS estimators of m and n are then

(V) = argmin,, G(m, N) = [C'C + Q(N)]~'C"y,

Mps(N) = Cinys = C[C'C + Q(N)]~'C"y, a symmetric linear
estimator (generalized ridge).

These estimators can be derived as Bayes estimators in a
normal error version of the multivariate linear model. Kimeldorf

and Wahba (1970) make the general point.



When d = 1, the penalty weights are non-negative scalars.
E.g. Wood (2000), Beran (2005) use multiple penalty terms
with scalar weights.

Functional data-analysis treats penalized estimation of a
function m of continuous covariates. E.g. Wahba, Wang, Gu,
Klein, Klein (1995), Li (2000), Ramsay and Silverman (2002).

To be considered:

Data-based choice of the affine penalty weights {N,:s € S§};
Supporting asymptotic theory for the foregoing, as p — oo;
Penalty matrices {Qs:s € S} suitable for the multiway layout
with d-variate responses;

Modifications for the case of a general unknown covariance
matrix X..



Canonical Form and Risk of 7j,5(/V)

Let R = I, ® C'C, a pd x pd matrix of full rank.

Let U = I, ® C(C'C)~/?, a nd x pd matrix.

Then C = I, ® C = URY?> and U'U = I,4. Hence,

ips(N) = C[C'C + Q(N)]~'C'y = US(N)U"y,

where S(N) = [I,q + R™Y*Q(N)R~'?]~ is symmetric.
Because R(C) = R(U) and U'U = I,4, 7 = Cm = UE, with
¢ =U'n. Let z=U'y. Then fj,(N) = US(N)z.

This is the canonical form of 7,5(V).

The risk of 7,;5(N) is thus

R(7(N),n) = p~'E[S(N)z — &> = p~![tx(T(NV)) + tx(T(N)&),
where T(N) = S?(N) and T(N) = [I,4 — S(N)J.



Estimated Risk

The estimated risk of 7,;5(N) is

R(N) = p~'[tr(T(N)) + te(T(N) (22" = L)),

(cf. Mallows (1973), Stein (1981)). Let N = argminy R(N).
E.g. Use Cholesky N, = L,L with {l5;; > 0}.

The adaptive PLS estimators of n and of m are

A

Napis = Npis(N) and mgpis = C Ngpis.

Supporting Asymptotics

Let | - [, denote spectral matrix norm: |B|,, = sup,||Bz|/|z|].

Let W (V) denote either the loss or estimated risk of 7,;s(V).

Let N = {N:max,cs|Ns|sp < b}. Then, for every finite a > 0,
lim sup E[sup [W(N) — R(i(N).n)[] = 0.

P=ptnP<a NeN



e For every finite a > 0,

lim sup |R(fapis,n) — min R(R(N),n)| = 0.

P00 j-1ip|2<q NeN

e Let IV denote either the loss or risk of 7,,, Then, for every

finite a > 0,
lim sup E|R(N)-V|=0.

P20 ptinP<a
The loss, risk and estimated risk of the candidate estimator
nys(IN) converge together, as p — oo, uniformly over N € N.
Estimated risk is here a trustworthy surrogate for loss or risk.
The risk of 7, converges, as p — o0, to the minimal risk
achievable by the PLS candidate estimators
The plug-in risk estimator R(NN) converges to the loss or risk

of 7)ypis @S p — 00.



Complete ky-way Layout with Multivariate Responses

Now the d dimensional responses depend on k&, covariates.
Covariate k£ has p;, distinct levels z 1 < xr2 < ... Tp .

Let 7 denote all ky-tuples ¢ = (41,19, ...,%,), Where 1 < 43 < py
for 1 < k < ky. Thus, 7;. Indexes the levels of covariate £ and
7 lists all possible covariate-level combinations.

We put the elements of Z in mirror-dictionary order.

We observe Y = C'M + E, the assumptions on £ as before.
Here C'is the n x p data-incidence matrix of O's and 1’s that
suitably replicates rows of the p x d matrix M into the rows of
E(Y)=CM.

The design is complete: rank(C') = p.

Row i € Z of M equals f(x1,, %2, .- - ,xkoﬂ;ko) where f is an

unknown vector-valued function.



Constructing Penalty Matrices {Q,:s € S}

We devise a scheme that penalizes individually the main
effects and interactions in the MANOVA decomposition of M.
For 1 < k < ky, define the p, x 1 vector u; = p,;m(l, 1,...,1).
Let A, be an annihilator: a matrix such that A,u;. = 0.

Let S denote the set of all subsets of {1,2,...,k}, including 0.
Let Qs = wpu, if k & s; and Qs = AL Ay if k € s. Define

ko
Qs — ® Qs,k—k0+1a ses.
k=1

Special case: A; = I, — wiu,. Denote Q) in this case by
Pyns. The matrices {Pynys:s € S} are mutually orthogonal,
orthogonal projections such that > | _¢ Pan s = 1.

MANOVA decomposition: M = > ¢ Pay M.



From the foregoing definitions, Py Qs = QsPans = Qs for
every s € §; and Py, Qs, = Qs,Pans, = 0if 51 # so. Thus,

(N, ® Qu)m = |Q¢ MN:? = | Qi (Pav . M)NP

The penalty term in the PLS criterion is seen to operate on
the summands in the MANOVA decompostion of M:

M QN)m =3 com/(Ne @ Qm = 3 5 |Qs* (Pan MNP
Spectral Form of the Penalty Matrices {Q}

AL AL = U\ U], where Ay = diag{l;;: 1 < i < pi}

and 0 = A1 < Ao < ... < Mgy, The first column of Uy is
chosen to be u;. Then wu, = UpE U], where

Ep = diag{es,: 1 <ip < pi}, with e 1 =1 and e;;, = 0 if 7, > 2.
Hence, Q, = U5, U., where Ty ;. = diag{~s::1 < ix < pi},
With v, i, = eri, Tk & 8 Yo ri, = A, if k € s.



Write Uy, = [uk1, ... Ugp) Then, Qs = fle Vs ki, Pr.ip, Where
Py, = ug4uy,; is a rank one orthogonal projection. For i € 7,
let P, = ®£O:1 Pr—kv14, and vy, ; = ®£O:1 Vs ko—k-+1,i5 -
letZ,={ie€Z:i,=1ifk ¢ sand i, > 2 if k € s}. This defines
a partition of Z. Then,

Qs = QL) Qs mtgr1 = D iet. Vsili:
Here, vy, =1ifi € Zy and v,; = [[,cs s If s # 0 and i € Z.
Note: The {P,} are mutually orthogonal projections such that
> ier P = I,a. The MANOVA projection Pays =) .. P

i€,
Next steps

e Structure of the PLS estimators in balanced layouts.

e Construction of suitable annihilator matrices.

e Extension of PLS estimators to a general covariance matrix ..



Balanced kj-way Layout with Multivariate Responses
In a balanced layout C'C' = nyI, for some ny > 1. Then,
s, = (C'C)~'C"y = ny'C'y (averaging responses over
replications) and, for Q(N) = > . (Vs ® Qy),

i = [C'C + QIN)TCy = [La + ny ' Q).

Using also Qs = ) ;.7 s Yields
pd + nO Q( ) - ZseS ZzeI [(Id T no 75 ZNS) & PZ]

Hence, for a balanced layout,

mplS(N) — Zses ZZEI [(]d + no 78 iV ) ! & R]?’h
In matrix form,

MPZS(N) — Zses ZzeI PMZS(]d +ngy % ZN) L
The annihilators determine the projections {P;} and the {~}
In the affine shrinkage factors. Estimated risk also simplifies.



Constructing Annihilators
Recall that row ¢ € 7 of M equals (x4, Z24,, - - - axko,z‘ko) where

J is unknown; and that z;; < ...z,

Covariate £ is nominal. Permutation of the covariate levels
{1 ,;:1 < j < pi} should not affect the candidate estimator. Set
A, = I,, — uiuy, an orthogonal projection. If all covariates are
nominal, this annihilator choice generates candidate estimators
that affinely penalize the individual terms in the MANOVA

decomposition of M.

Covariate k is ordinal. In choosing Aj;, we might hypothesize
that f varies locally in ordinal covariate k like a polynomial of
degree r — 1. Right or wrong, R(79.ys,n) < R(Ms,m) as p — oo.
The estimated risk R(ﬁapls) keeps score!



The relevant local polynomial annihilator Ay is a (px — ) X py
matrix charactrized by three conditions:

All elements in row ¢ of A, that are not in columns
t,t+1,...,t+ r are zero.

Let v = (w41, Tpo, ..., Thp,) Then Apz? =0for 0 < h <r—1.

Each row of A, has unit Euclidean length.

To meet these conditions, set the non-zero elements in row ¢
of A; equal to the basis vector of degree r in the orthonormal
polynomial basis that is defined on the r + 1 design points

(gt -, Tkitr). E.Q. use the R function poly.

Note: When the ordinal covariate values {z; ;:1 < j < p;} are
equally spaced, this construction makes A; a multiple of the
r-th difference matrix with p; columns.



The Case of General X

Model Y = CM + VX2 is equivalent to ys = nsx + v, where
ys = (X2 @ L)y, nx = (X2 ® L), and v = vec(V). The
compents of v are iid with mean 0, variance 1 and finite 4-th

moment—the model already treated.

Suppose ¥ is known. Because n = (X2 ® I)nx ,
Estimate 7y by 7)x .,1s based on yx.

Estimate 7 by Ay = (2Y2®1,)As.apis; and m by 14,5 = C s
The previous asymptotic theory carries over to the general X
model when the loss function is

p~ s — sl =p~H (1 —n)(E7 @ L) () —n).
If > Is unknown, replace it by a consistent estimator > in

constructing 7)q,.s and mg;s-



Remarks on Estimating X

If 3 is consistent for 3, the earlier asymptotics for the case

Y. = [; can be extended. Loss and estimated risk converge
together. Under stronger conditions on >, the risk, loss and
estimated risk converge together.

When n > p, least squares theory provides the estimator

S, = (n —p)~'Y'(I, — CCH)Y. This is consistent for ¥ when
n —p— OQ.

In the absence of adequate replication, pooling may provide
a useful estimator of > fit a plausible linear submodel for M
by least squares and construct the least squares estimator of
> associated with this fit. This 3 will be consistent if its bias
tends to zero in the asymptotics.

Obviously, replication is desirable in estimating ..



The Vineyard Data

15 20 25

Grape Yield in Lugs
10

Row : of data matrix Y reports the grape yields harvested in
three different years from physical row : of a vineyard. This is
a balanced one-way layout with trivariate responses. Both year
and row may affect the harvest yields observed. We look for
persistent pattern by estimating mean yields.

Grape Harvest Yields

0 10 20 30 40

Vineyard Row




In this one-way layout, p = n = 52,d = 3,and k;, = 1.
Hence, S = {{0},{1}}, Z = {i:1 < ¢ < p}, and Iy = {1},
Ty =12 <@ < p}.

Set the annihilator A; to be the second-difference matrix.
The eigenvectors of A} A;, ordered from smallest to

largest eigenvalue, give the basis U that supports spectral
representations of the two penalty matrices {Q,:s € S}.

Estimate X from the residuals after the least squares fit of Y to
the first 20 columns of U (pooling strategy).

Take N¢p = 0. Then the candidate PLS estimators do not
shrink the mean response vector. Adaptation is over all p.d.
affine penalty weights N.



Some Findings

15 20 25

Grape Yield in Lugs
10

Vineyard Harvest Data
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Adaptive Multivariate PLS Fit
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Vineyard Row

e Y indicates slightly correlated heteroscedastic errors:

e The estimated risks of M,,;, and M;, are 0.364 and 3.000. In
this example, Mapls reduces estimated risk more than eightfold!

3 =

0.994 0.191 0.160
0.191 1.782 —.268
0.160 —.268 3.054

20



A Non-statistical Example

Portrait of Kaiser Rudolf Il by Hans von Aachen



Superb biased estimator: Kaiser Rudolf || by Giuseppe Arcimboldo
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