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Multivariate Linear Model

Y = CM + E, where

• the rows of n × d matrix Y are d-variate responses;

• the n × p design matrix C has rank p ≤ n;

• the p × d matrix M is unknown;

• the n × d error matrix E = V Σ1/2, where Σ is an unknown p.d.

covariance matrix and the elements of V are iid with mean 0,

variance 1, and finite 4-th moment.

The least squares estimator of M is M̂ls = C+Y .

Let y = vec(Y ), m = vec(M), e = vec(E) and C̃ = Id ⊗ C.

The vectorized model asserts y = C̃m + e.

The least squares estimator of m is m̂ls = C̃+y = vec(M̂ls).

For now, assume Σ = Id.
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Quadratic Loss and Risk

Let η̂ be any estimator of η = C̃m = E(y).

The loss of η is L(η̂, η) = p−1|η̂ − η|2 and the corresponding

risk is R(η̂, η) = EL(η̂, η). Equivalently, these are loss and risk

functions on estimators of m through the 1-to-1 map η̂ = C̃m̂.

The least squares estimator η̂ls = C̃m̂ls = C̃C̃+y has risk

R(η̂ls, η) = d.

Biased estimators of η can reduce risk substantially: Stein

(1956), James and Stein (1961), Stein (1966); also papers

on symmetric linear estimators such as Stein (1981), Li and

Hwang (1984), Buja, Hastie and Tibshirani (1989), Kneip

(1994), Beran (2007) . . .

Penalized least squares (PLS) generates promising, biased,

candidate symmetric linear estimators of η.
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General Structure of PLS for the Multivariate Linear Model

Let S be an index set of fixed cardinality.

Let {Qs: s ∈ S} be p × p p.s.d. penalty matrices.

N = {Ns: s ∈ S} be d × d p.s.d. affine penalty weights.

PLS criterion: G(m,N) = |y − C̃m|2 + m′Q(N)m,

where Q(N) =
∑

s∈S(Ns ⊗ Qs) .

The PLS estimators of m and η are then

m̂pls(N) = argminm G(m,N) = [C̃ ′C̃ + Q(N)]−1C̃ ′y,

η̂pls(N) = C̃m̂pls = C̃[C̃ ′C̃ + Q(N)]−1C̃ ′y, a symmetric linear

estimator (generalized ridge).

These estimators can be derived as Bayes estimators in a

normal error version of the multivariate linear model. Kimeldorf

and Wahba (1970) make the general point.
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• When d = 1, the penalty weights are non-negative scalars.

E.g. Wood (2000), Beran (2005) use multiple penalty terms

with scalar weights.

• Functional data-analysis treats penalized estimation of a

function m of continuous covariates. E.g. Wahba, Wang, Gu,

Klein, Klein (1995), Li (2000), Ramsay and Silverman (2002).

To be considered:

• Data-based choice of the affine penalty weights {Ns: s ∈ S};

• Supporting asymptotic theory for the foregoing, as p → ∞;

• Penalty matrices {Qs: s ∈ S} suitable for the multiway layout

with d-variate responses;

• Modifications for the case of a general unknown covariance

matrix Σ.
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Canonical Form and Risk of η̂pls(N)

Let R̃ = Id ⊗ C ′C, a pd × pd matrix of full rank.

Let Ũ = Id ⊗ C(C ′C)−1/2, a nd × pd matrix.

Then C̃ = Id ⊗ C = ŨR̃1/2 and Ũ ′Ũ = Ipd. Hence,

η̂pls(N) = C̃[C̃ ′C̃ + Q(N)]−1C̃ ′y = ŨS(N)Ũ ′y,

where S(N) = [Ipd + R̃−1/2Q(N)R̃−1/2]−1 is symmetric.

Because R(C̃) = R(Ũ) and Ũ ′Ũ = Ipd, η = C̃m = Ũξ, with

ξ = Ũ ′η. Let z = Ũ ′y. Then η̂pls(N) = ŨS(N)z.

This is the canonical form of η̂pls(N).

The risk of η̂pls(N) is thus

R(η̂(N), η) = p−1E|S(N)z − ξ|2 = p−1[tr(T (N)) + tr(T̄ (N)ξξ′)],

where T (N) = S2(N) and T̄ (N) = [Ipd − S(N)]2.
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Estimated Risk

The estimated risk of η̂pls(N) is

R̂(N) = p−1[tr(T (N)) + tr(T̄ (N)(zz′ − Ipd)
′)],

(cf. Mallows (1973), Stein (1981)). Let N̂ = argminN R̂(N).

E.g. Use Cholesky Ns = LsL
′
s with {ls,i,i ≥ 0}.

The adaptive PLS estimators of η and of m are

η̂apls = η̂pls(N̂) and m̂apls = C+η̂apls.

Supporting Asymptotics

Let | · |sp denote spectral matrix norm: |B|sp = supx 	=0[|Bx|/|x|].
• Let W (N) denote either the loss or estimated risk of η̂pls(N).

Let N = {N : maxs∈S |Ns|sp ≤ b}. Then, for every finite a > 0,

lim
p→∞

sup
p−1|η|2≤a

E[ sup
N∈N

|W (N) − R(η̂pls(N), η)|] = 0.
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• For every finite a > 0,

lim
p→∞

sup
p−1|η|2≤a

|R(η̂apls, η) − min
N∈N

R(η̂(N), η)| = 0.

• Let V denote either the loss or risk of η̂apls, Then, for every

finite a > 0,

lim
p→∞

sup
p−1|η|2≤a

E|R̂(N̂) − V | = 0.

The loss, risk and estimated risk of the candidate estimator

η̂pls(N) converge together, as p → ∞, uniformly over N ∈ N .

Estimated risk is here a trustworthy surrogate for loss or risk.

The risk of η̂apls converges, as p → ∞, to the minimal risk

achievable by the PLS candidate estimators

The plug-in risk estimator R̂(N̂) converges to the loss or risk

of η̂apls as p → ∞.
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Complete k0-way Layout with Multivariate Responses

Now the d dimensional responses depend on k0 covariates.

Covariate k has pk distinct levels xk,1 < xk,2 < . . . xk,pk
.

Let I denote all k0-tuples i = (i1, i2, . . . , ik0
), where 1 ≤ ik ≤ pk

for 1 ≤ k ≤ k0. Thus, ik indexes the levels of covariate k and

I lists all possible covariate-level combinations.

We put the elements of I in mirror-dictionary order.

We observe Y = CM + E, the assumptions on E as before.

Here C is the n × p data-incidence matrix of 0’s and 1’s that

suitably replicates rows of the p × d matrix M into the rows of

E(Y ) = CM .

The design is complete: rank(C) = p.

Row i ∈ I of M equals f(x1,i1, x2,i2, . . . , xk0,ik0
) where f is an

unknown vector-valued function.
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Constructing Penalty Matrices {Qs: s ∈ S}
We devise a scheme that penalizes individually the main

effects and interactions in the MANOVA decomposition of M .

For 1 ≤ k ≤ k0, define the pk × 1 vector uk = p
−1/2
k (1, 1, . . . , 1)′.

Let Ak be an annihilator: a matrix such that Akuk = 0.

Let S denote the set of all subsets of {1, 2, . . . , k0}, including ∅.

Let Qs,k = uku
′
k if k /∈ s; and Qs,k = A′

kAk if k ∈ s. Define

Qs =

k0⊗
k=1

Qs,k−k0+1, s ∈ S.

Special case: Ak = Ipk
− uku

′
k. Denote Qs in this case by

PAN,s. The matrices {PAN,s: s ∈ S} are mutually orthogonal,

orthogonal projections such that
∑

s∈S PAN,s = Ip.

MANOVA decomposition: M =
∑

s∈S PAN,sM .
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From the foregoing definitions, PAN,sQs = QsPAN,s = Qs for

every s ∈ S; and PAN,s1
Qs2

= Qs2
PAN,s1

= 0 if s1 	= s2. Thus,

m′(Ns ⊗ Qs)m = |Q1/2
s MN

1/2
s |2 = |Q1/2

s (PAN,sM)N
1/2
s |2.

The penalty term in the PLS criterion is seen to operate on

the summands in the MANOVA decompostion of M :

m′Q(N)m =
∑

s∈S m′(Ns ⊗ Qs)m =
∑

s∈S |Q
1/2
s (PAN,sM)N

1/2
s |2.

Spectral Form of the Penalty Matrices {Qs}

A′
kAk = UkΛkU

′
k, where Λk = diag{lk,ik: 1 ≤ ik ≤ pk}

and 0 = λk,1 ≤ λk,2 ≤ . . . ≤ λk,pk
. The first column of Uk is

chosen to be uk. Then uku
′
k = UkEkU

′
k, where

Ek = diag{ek,ik: 1 ≤ ik ≤ pk}, with ek,1 = 1 and ek,ik = 0 if ik ≥ 2.

Hence, Qs,k = UkΓs,kU
′
k, where Γs,k = diag{γs,k,ik: 1 ≤ ik ≤ pk},

with γs,k,ik = ek,ik if k /∈ s; γs,k,ik = λk,ik if k ∈ s.
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Write Uk = [uk,1, . . . uk,pk
]. Then, Qs,k =

∑pk

ik=1 γs,k,ikPk,ik, where

Pk,ik = uk,iku
′
k,ik

is a rank one orthogonal projection. For i ∈ I,

let Pi =
⊗k0

k=1 Pk0−k+1,ik and γs,i =
⊗k0

k=1 γs,k0−k+1,ik.

Let Is = {i ∈ I: ik = 1 if k /∈ s and ik ≥ 2 if k ∈ s}. This defines

a partition of I. Then,

Qs =
⊗k0

k=1 Qs,k−k0+1 =
∑

i∈Is
γs,iPi.

Here, γ{∅},i = 1 if i ∈ I∅ and γs,i =
∏

k∈s λs,ik if s 	= ∅ and i ∈ Is.

Note: The {Pi} are mutually orthogonal projections such that∑
i∈I Pi = Ipd. The MANOVA projection PAN,s =

∑
i∈Is

Pi.

Next steps

• Structure of the PLS estimators in balanced layouts.

• Construction of suitable annihilator matrices.

• Extension of PLS estimators to a general covariance matrix Σ.
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Balanced k0-way Layout with Multivariate Responses

In a balanced layout C ′C = n0Ip for some n0 ≥ 1. Then,

m̂ls = (C̃ ′C̃)−1C̃ ′y = n−1
0 C̃ ′y (averaging responses over

replications) and, for Q(N) =
∑

s∈S(Ns ⊗ Qs),

m̂pls = [C̃ ′C̃ + Q(N)]−1C̃ ′y = [Ipd + n−1
0 Q(N)]−1m̂ls.

Using also Qs =
∑

i∈Is
γs,iPi yields

Ipd + n−1
0 Q(N) =

∑
s∈S

∑
i∈Is

[(Id + n−1
0 γs,iNs) ⊗ Pi].

Hence, for a balanced layout,

m̂pls(N) =
∑

s∈S
∑

i∈Is
[(Id + n−1

0 γs,iNs)
−1 ⊗ Pi]m̂ls.

In matrix form,

M̂pls(N) =
∑

s∈S
∑

i∈Is
PiM̂ls(Id + n−1

0 γs,iNs)
−1.

The annihilators determine the projections {Pi} and the {γs,i}
in the affine shrinkage factors. Estimated risk also simplifies.
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Constructing Annihilators

Recall that row i ∈ I of M equals f(x1,i1, x2,i2, . . . , xk0,ik0
) where

f is unknown; and that xk,1 < . . . xk,pk
.

Covariate k is nominal. Permutation of the covariate levels

{xk,j: 1 ≤ j ≤ pk} should not affect the candidate estimator. Set

Ak = Ipk
− uku

′
k, an orthogonal projection. If all covariates are

nominal, this annihilator choice generates candidate estimators

that affinely penalize the individual terms in the MANOVA

decomposition of M .

Covariate k is ordinal. In choosing Ak, we might hypothesize

that f varies locally in ordinal covariate k like a polynomial of

degree r − 1. Right or wrong, R(η̂apls, η) ≤ R(η̂ls, η) as p → ∞.

The estimated risk R̂(η̂apls) keeps score!
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The relevant local polynomial annihilator Ak is a (pk − r) × pk

matrix charactrized by three conditions:

• All elements in row t of Ak that are not in columns

t, t + 1, . . . , t + r are zero.

• Let x = (xk,1, xk,2, . . . , xk,pk
)′. Then Akx

h
k = 0 for 0 ≤ h ≤ r − 1.

• Each row of Ak has unit Euclidean length.

To meet these conditions, set the non-zero elements in row t

of Ak equal to the basis vector of degree r in the orthonormal

polynomial basis that is defined on the r + 1 design points

(xk,t, . . . , xk,t+r). E.g. use the R function poly.

Note: When the ordinal covariate values {xk,j: 1 ≤ j ≤ pk} are

equally spaced, this construction makes Ak a multiple of the

r-th difference matrix with pk columns.
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The Case of General Σ

Model Y = CM + V Σ1/2 is equivalent to yΣ = ηΣ + v, where

yΣ = (Σ−1/2 ⊗ Ip)y, ηΣ = (Σ−1/2 ⊗ Ip)η, and v = vec(V ). The

compents of v are iid with mean 0, variance 1 and finite 4-th

moment—the model already treated.

Suppose Σ is known. Because η = (Σ1/2 ⊗ Ip)ηΣ ,

• Estimate ηΣ by η̂Σ,apls based on yΣ.

• Estimate η by η̂apls = (Σ1/2⊗Ip)η̂Σ,apls; and m by m̂apls = C̃+η̂apls.

• The previous asymptotic theory carries over to the general Σ

model when the loss function is

p−1|η̂Σ − ηΣ|2 = p−1(η̂ − η)′(Σ−1 ⊗ Ip)(η̂ − η).

If Σ is unknown, replace it by a consistent estimator Σ̂ in

constructing η̂apls and m̂apls.
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Remarks on Estimating Σ

• If Σ̂ is consistent for Σ, the earlier asymptotics for the case

Σ = Id can be extended. Loss and estimated risk converge

together. Under stronger conditions on Σ̂, the risk, loss and

estimated risk converge together.

• When n > p, least squares theory provides the estimator

Σ̂ls = (n − p)−1Y ′(In − CC+)Y . This is consistent for Σ when

n − p → ∞.

• In the absence of adequate replication, pooling may provide

a useful estimator of Σ: fit a plausible linear submodel for M

by least squares and construct the least squares estimator of

Σ associated with this fit. This Σ̂ will be consistent if its bias

tends to zero in the asymptotics.

• Obviously, replication is desirable in estimating Σ.
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The Vineyard Data
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Row i of data matrix Y reports the grape yields harvested in

three different years from physical row i of a vineyard. This is

a balanced one-way layout with trivariate responses. Both year

and row may affect the harvest yields observed. We look for

persistent pattern by estimating mean yields.
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• In this one-way layout, p = n = 52, d = 3, and k0 = 1.

Hence, S = {{∅}, {1}}, I = {i: 1 ≤ i ≤ p}, and I{∅} = {1},

I{1} = {i: 2 ≤ i ≤ p}.

• Set the annihilator A1 to be the second-difference matrix.

• The eigenvectors of A′
1A1, ordered from smallest to

largest eigenvalue, give the basis U that supports spectral

representations of the two penalty matrices {Qs: s ∈ S}.

• Estimate Σ from the residuals after the least squares fit of Y to

the first 20 columns of U (pooling strategy).

• Take N{∅} = 0. Then the candidate PLS estimators do not

shrink the mean response vector. Adaptation is over all p.d.

affine penalty weights N{1}.
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Some Findings
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• Σ̂ indicates slightly correlated heteroscedastic errors:

Σ̂ =

⎛
⎝

0.994 0.191 0.160
0.191 1.782 −.268
0.160 −.268 3.054

⎞
⎠

• The estimated risks of M̂apls and M̂ls are 0.364 and 3.000. In

this example, M̂apls reduces estimated risk more than eightfold!
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A Non-statistical Example

Portrait of Kaiser Rudolf II by Hans von Aachen
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Superb biased estimator: Kaiser Rudolf II by Giuseppe Arcimboldo
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