Penalized Fits to a Multiway Layout with Multivariate Responses

Rudolf Beran University of California, Davis

Workshop on Model Selection and Related Areas University of Vienna 24 July 2008

Multivariate Linear Model

Y = CM + E, where

- the rows of $n \times d$ matrix Y are d-variate responses;
- the $n \times p$ design matrix C has rank $p \leq n$;
- the $p \times d$ matrix M is unknown;

the n × d error matrix E = VΣ^{1/2}, where Σ is an unknown p.d. covariance matrix and the elements of V are iid with mean 0, variance 1, and finite 4-th moment.

The least squares estimator of M is $\hat{M}_{ls} = C^+Y$.

Let $y = \operatorname{vec}(Y)$, $m = \operatorname{vec}(M)$, $e = \operatorname{vec}(E)$ and $\tilde{C} = I_d \otimes C$.

The vectorized model asserts $y = \tilde{C}m + e$.

The least squares estimator of m is $\hat{m}_{ls} = \tilde{C}^+ y = \operatorname{vec}(\hat{M}_{ls})$.

For now, assume $\Sigma = I_d$.

Quadratic Loss and Risk

Let $\hat{\eta}$ be any estimator of $\eta = \tilde{C}m = E(y)$.

The loss of η is $L(\hat{\eta}, \eta) = p^{-1}|\hat{\eta} - \eta|^2$ and the corresponding risk is $R(\hat{\eta}, \eta) = EL(\hat{\eta}, \eta)$. Equivalently, these are loss and risk functions on estimators of m through the 1-to-1 map $\hat{\eta} = \tilde{C}\hat{m}$. The least squares estimator $\hat{\eta}_{ls} = \tilde{C}\hat{m}_{ls} = \tilde{C}\tilde{C}^+y$ has risk $R(\hat{\eta}_{ls}, \eta) = d$.

Biased estimators of η can reduce risk substantially: Stein (1956), James and Stein (1961), Stein (1966); also papers on symmetric linear estimators such as Stein (1981), Li and Hwang (1984), Buja, Hastie and Tibshirani (1989), Kneip (1994), Beran (2007) ...

Penalized least squares (PLS) generates promising, biased, candidate symmetric linear estimators of η .

General Structure of PLS for the Multivariate Linear Model

Let \mathcal{S} be an index set of fixed cardinality.

Let $\{Q_s: s \in S\}$ be $p \times p$ p.s.d. penalty matrices.

 $N = \{N_s : s \in S\}$ be $d \times d$ p.s.d. affine penalty weights.

PLS criterion: $G(m, N) = |y - \tilde{C}m|^2 + m'Q(N)m$, where $Q(N) = \sum_{s \in S} (N_s \otimes Q_s)$.

The PLS estimators of m and η are then $\hat{m}_{pls}(N) = \operatorname{argmin}_m G(m, N) = [\tilde{C}'\tilde{C} + Q(N)]^{-1}\tilde{C}'y,$ $\hat{\eta}_{pls}(N) = \tilde{C}\hat{m}_{pls} = \tilde{C}[\tilde{C}'\tilde{C} + Q(N)]^{-1}\tilde{C}'y,$ a symmetric linear estimator (generalized ridge).

These estimators can be derived as Bayes estimators in a normal error version of the multivariate linear model. Kimeldorf and Wahba (1970) make the general point.

- When d = 1, the penalty weights are non-negative scalars.
 E.g. Wood (2000), Beran (2005) use multiple penalty terms with scalar weights.
- Functional data-analysis treats penalized estimation of a function *m* of **continuous** covariates. E.g. Wahba, Wang, Gu, Klein, Klein (1995), Li (2000), Ramsay and Silverman (2002).

To be considered:

- Data-based choice of the affine penalty weights $\{N_s: s \in S\}$;
- Supporting asymptotic theory for the foregoing, as $p \to \infty$;
- Penalty matrices {Q_s: s ∈ S} suitable for the multiway layout with *d*-variate responses;
- Modifications for the case of a general unknown covariance matrix $\boldsymbol{\Sigma}.$

Canonical Form and Risk of $\hat{\eta}_{pls}(N)$

Let $\tilde{R} = I_d \otimes C'C$, a $pd \times pd$ matrix of full rank. Let $\tilde{U} = I_d \otimes C(C'C)^{-1/2}$, a $nd \times pd$ matrix. Then $\tilde{C} = I_d \otimes C = \tilde{U}\tilde{R}^{1/2}$ and $\tilde{U}'\tilde{U} = I_{pd}$. Hence, $\hat{\eta}_{pls}(N) = \tilde{C}[\tilde{C}'\tilde{C} + Q(N)]^{-1}\tilde{C}'y = \tilde{U}S(N)\tilde{U}'y,$ where $S(N) = [I_{pd} + \tilde{R}^{-1/2}Q(N)\tilde{R}^{-1/2}]^{-1}$ is symmetric. Because $\mathcal{R}(\tilde{C}) = \mathcal{R}(\tilde{U})$ and $\tilde{U}'\tilde{U} = I_{pd}$, $\eta = \tilde{C}m = \tilde{U}\xi$, with $\xi = \tilde{U}'\eta$. Let $z = \tilde{U}'y$. Then $\hat{\eta}_{pls}(N) = \tilde{U}S(N)z$. This is the **canonical form** of $\hat{\eta}_{pls}(N)$.

The risk of $\hat{\eta}_{pls}(N)$ is thus $R(\hat{\eta}(N),\eta) = p^{-1} \mathbb{E}|S(N)z - \xi|^2 = p^{-1}[\operatorname{tr}(T(N)) + \operatorname{tr}(\overline{T}(N)\xi\xi')],$ where $T(N) = S^2(N)$ and $\overline{T}(N) = [I_{pd} - S(N)]^2.$

Estimated Risk

The estimated risk of $\hat{\eta}_{pls}(N)$ is $\hat{R}(N) = p^{-1}[\operatorname{tr}(T(N)) + \operatorname{tr}(\overline{T}(N)(zz' - I_{pd})')],$ (cf. Mallows (1973), Stein (1981)). Let $\hat{N} = \operatorname{argmin}_{N} \hat{R}(N).$ E.g. Use Cholesky $N_s = L_s L'_s$ with $\{l_{s,i,i} \ge 0\}.$ The adaptive PLS estimators of η and of m are $\hat{\eta}_{apls} = \hat{\eta}_{pls}(\hat{N})$ and $\hat{m}_{apls} = C^+ \hat{\eta}_{apls}.$

Supporting Asymptotics

Let $|\cdot|_{sp}$ denote spectral matrix norm: $|B|_{sp} = \sup_{x \neq 0} [|Bx|/|x|]$. • Let W(N) denote either the loss or estimated risk of $\hat{\eta}_{pls}(N)$. Let $\mathcal{N} = \{N: \max_{s \in \mathcal{S}} |N_s|_{sp} \leq b\}$. Then, for every finite a > 0,

$$\lim_{p \to \infty} \sup_{p^{-1}|\eta|^2 \le a} \operatorname{E}[\sup_{N \in \mathcal{N}} |W(N) - R(\hat{\eta}_{pls}(N), \eta)|] = 0.$$

• For every finite a > 0,

$$\lim_{p \to \infty} \sup_{p^{-1}|\eta|^2 \le a} |R(\hat{\eta}_{apls}, \eta) - \min_{N \in \mathcal{N}} R(\hat{\eta}(N), \eta)| = 0.$$

$$\lim_{p \to \infty} \sup_{p^{-1}|\eta|^2 \le a} \mathbf{E} |\hat{R}(\hat{N}) - V| = 0.$$

The loss, risk and estimated risk of the candidate estimator $\hat{\eta}_{pls}(N)$ converge together, as $p \to \infty$, **uniformly** over $N \in \mathcal{N}$. Estimated risk is here a trustworthy surrogate for loss or risk. The risk of $\hat{\eta}_{apls}$ converges, as $p \to \infty$, to the minimal risk achievable by the PLS candidate estimators The **plug-in risk estimator** $\hat{R}(\hat{N})$ converges to the loss or risk of $\hat{\eta}_{apls}$ as $p \to \infty$.

Complete k_0 -way Layout with Multivariate Responses

Now the *d* dimensional responses depend on k_0 covariates. Covariate *k* has p_k distinct levels $x_{k,1} < x_{k,2} < \ldots x_{k,p_k}$. Let \mathcal{I} denote all k_0 -tuples $i = (i_1, i_2, \ldots, i_{k_0})$, where $1 \le i_k \le p_k$ for $1 \le k \le k_0$. Thus, i_k indexes the levels of covariate *k* and \mathcal{I} lists all possible covariate-level combinations.

We put the elements of \mathcal{I} in **mirror-dictionary order**.

We observe Y = CM + E, the assumptions on E as before. Here C is the $n \times p$ data-incidence matrix of 0's and 1's that suitably replicates rows of the $p \times d$ matrix M into the rows of E(Y) = CM.

The design is complete: rank(C) = p.

Row $i \in \mathcal{I}$ of M equals $f(x_{1,i_1}, x_{2,i_2}, \ldots, x_{k_0,i_{k_0}})$ where f is an **unknown** vector-valued function.

Constructing Penalty Matrices $\{Q_s: s \in S\}$

We devise a scheme that penalizes individually the main effects and interactions in the MANOVA decomposition of M. For $1 \le k \le k_0$, define the $p_k \times 1$ vector $u_k = p_k^{-1/2}(1, 1, \dots, 1)'$. Let A_k be an **annihilator**: a matrix such that $A_k u_k = 0$. Let S denote the set of all subsets of $\{1, 2, \dots, k_0\}$, including \emptyset . Let $Q_{s,k} = u_k u'_k$ if $k \notin s$; and $Q_{s,k} = A'_k A_k$ if $k \in s$. Define

$$Q_s = \bigotimes_{k=1}^{k_0} Q_{s,k-k_0+1}, \qquad s \in \mathcal{S}.$$

Special case: $A_k = I_{p_k} - u_k u'_k$. Denote Q_s in this case by $P_{AN,s}$. The matrices $\{P_{AN,s}: s \in S\}$ are mutually orthogonal, orthogonal projections such that $\sum_{s \in S} P_{AN,s} = I_p$. **MANOVA decomposition:** $M = \sum_{s \in S} P_{AN,s} M$. From the foregoing definitions, $P_{AN,s}Q_s = Q_s P_{AN,s} = Q_s$ for every $s \in S$; and $P_{AN,s_1}Q_{s_2} = Q_{s_2}P_{AN,s_1} = 0$ if $s_1 \neq s_2$. Thus, $m'(N_s \otimes Q_s)m = |Q_s^{1/2}MN_s^{1/2}|^2 = |Q_s^{1/2}(P_{AN,s}M)N_s^{1/2}|^2$.

The **penalty term** in the PLS criterion is seen to operate on the summands in the MANOVA decomposition of M: $m'Q(N)m = \sum_{s \in S} m'(N_s \otimes Q_s)m = \sum_{s \in S} |Q_s^{1/2}(P_{AN,s}M)N_s^{1/2}|^2.$ Spectral Form of the Penalty Matrices $\{Q_s\}$ $A'_k A_k = U_k \Lambda_k U'_k$, where $\Lambda_k = \text{diag}\{l_{k,i_k}: 1 \le i_k \le p_k\}$ and $0 = \lambda_{k,1} \leq \lambda_{k,2} \leq \ldots \leq \lambda_{k,p_k}$. The first column of U_k is chosen to be u_k . Then $u_k u'_k = U_k E_k U'_k$, where $E_k = \text{diag}\{e_{k,i_k}: 1 \le i_k \le p_k\}$, with $e_{k,1} = 1$ and $e_{k,i_k} = 0$ if $i_k \ge 2$. Hence, $Q_{s,k} = U_k \Gamma_{s,k} U'_k$, where $\Gamma_{s,k} = \text{diag}\{\gamma_{s,k,i_k}: 1 \leq i_k \leq p_k\}$, with $\gamma_{s,k,i_k} = e_{k,i_k}$ if $k \notin s$; $\gamma_{s,k,i_k} = \lambda_{k,i_k}$ if $k \in s$.

Write $U_k = [u_{k,1}, \ldots u_{k,p_k}]$. Then, $Q_{s,k} = \sum_{i_k=1}^{p_k} \gamma_{s,k,i_k} P_{k,i_k}$, where $P_{k,i_k} = u_{k,i_k} u'_{k,i_k}$ is a rank one orthogonal projection. For $i \in \mathcal{I}$, let $P_i = \bigotimes_{k=1}^{k_0} P_{k_0-k+1,i_k}$ and $\gamma_{s,i} = \bigotimes_{k=1}^{k_0} \gamma_{s,k_0-k+1,i_k}$. Let $\mathcal{I}_s = \{i \in \mathcal{I} : i_k = 1 \text{ if } k \notin s \text{ and } i_k \geq 2 \text{ if } k \in s\}$. This defines a partition of \mathcal{I} . Then,

$$Q_s = \bigotimes_{k=1}^{k_0} Q_{s,k-k_0+1} = \sum_{i \in \mathcal{I}_s} \gamma_{s,i} P_i.$$

Here, $\gamma_{\{\emptyset\},i} = 1$ if $i \in \mathcal{I}_{\emptyset}$ and $\gamma_{s,i} = \prod_{k \in s} \lambda_{s,i_k}$ if $s \neq \emptyset$ and $i \in \mathcal{I}_s$. **Note:** The $\{P_i\}$ are mutually orthogonal projections such that $\sum_{i \in \mathcal{I}} P_i = I_{pd}$. The MANOVA projection $P_{AN,s} = \sum_{i \in \mathcal{I}_s} P_i$.

Next steps

- Structure of the PLS estimators in **balanced** layouts.
- Construction of suitable annihilator matrices.
- Extension of PLS estimators to a general covariance matrix Σ .

Balanced *k*₀-way Layout with Multivariate Responses

In a balanced layout $C'C = n_0 I_p$ for some $n_0 \ge 1$. Then, $\hat{m}_{ls} = (\tilde{C}'\tilde{C})^{-1}\tilde{C}'y = n_0^{-1}\tilde{C}'y$ (averaging responses over replications) and, for $Q(N) = \sum_{s \in \mathcal{S}} (N_s \otimes Q_s)$, $\hat{m}_{pls} = [\tilde{C}'\tilde{C} + Q(N)]^{-1}\tilde{C}'y = [I_{pd} + n_0^{-1}Q(N)]^{-1}\hat{m}_{ls}$.

Using also
$$Q_s = \sum_{i \in \mathcal{I}_s} \gamma_{s,i} P_i$$
 yields
 $I_{pd} + n_0^{-1} Q(N) = \sum_{s \in \mathcal{S}} \sum_{i \in \mathcal{I}_s} [(I_d + n_0^{-1} \gamma_{s,i} N_s) \otimes P_i].$

Hence, for a balanced layout,

$$\hat{m}_{pls}(N) = \sum_{s \in \mathcal{S}} \sum_{i \in \mathcal{I}_s} [(I_d + n_0^{-1} \gamma_{s,i} N_s)^{-1} \otimes P_i] \hat{m}_{ls}.$$

In matrix form,

$$\hat{M}_{pls}(N) = \sum_{s \in \mathcal{S}} \sum_{i \in \mathcal{I}_s} P_i \hat{M}_{ls} (I_d + n_0^{-1} \gamma_{s,i} N_s)^{-1}.$$

The annihilators determine the projections $\{P_i\}$ and the $\{\gamma_{s,i}\}$ in the affine shrinkage factors. Estimated risk also simplifies.

Constructing Annihilators

Recall that row $i \in \mathcal{I}$ of M equals $f(x_{1,i_1}, x_{2,i_2}, \ldots, x_{k_0,i_{k_0}})$ where f is unknown; and that $x_{k,1} < \ldots x_{k,p_k}$.

Covariate *k* **is nominal.** Permutation of the covariate levels $\{x_{k,j}: 1 \le j \le p_k\}$ should not affect the candidate estimator. Set $A_k = I_{p_k} - u_k u'_k$, an orthogonal projection. If all covariates are nominal, this annihilator choice generates candidate estimators that affinely penalize the individual terms in the MANOVA decomposition of M.

Covariate k is ordinal. In choosing A_k , we might hypothesize that f varies locally in ordinal covariate k like a polynomial of degree r - 1. Right or wrong, $R(\hat{\eta}_{apls}, \eta) \leq R(\hat{\eta}_{ls}, \eta)$ as $p \to \infty$. The estimated risk $\hat{R}(\hat{\eta}_{apls})$ keeps score! The relevant **local polynomial annihilator** A_k is a $(p_k - r) \times p_k$ matrix charactrized by three conditions:

- All elements in row t of A_k that are not in columns $t, t + 1, \ldots, t + r$ are zero.
- Let $x = (x_{k,1}, x_{k,2}, \dots, x_{k,p_k})'$. Then $A_k x_k^h = 0$ for $0 \le h \le r 1$.
- Each row of A_k has unit Euclidean length.

To meet these conditions, set the non-zero elements in row tof A_k equal to the basis vector of degree r in the orthonormal polynomial basis that is defined on the r + 1 design points $(x_{k,t}, \ldots, x_{k,t+r})$. E.g. use the R function poly.

Note: When the ordinal covariate values $\{x_{k,j}: 1 \le j \le p_k\}$ are equally spaced, this construction makes A_k a multiple of the *r*-th difference matrix with p_k columns.

The Case of General Σ

Model $Y = CM + V\Sigma^{1/2}$ is equivalent to $y_{\Sigma} = \eta_{\Sigma} + v$, where $y_{\Sigma} = (\Sigma^{-1/2} \otimes I_p)y, \ \eta_{\Sigma} = (\Sigma^{-1/2} \otimes I_p)\eta$, and v = vec(V). The compents of v are iid with mean 0, variance 1 and finite 4-th moment—the model already treated.

Suppose Σ is known. Because $\eta = (\Sigma^{1/2} \otimes I_p) \eta_\Sigma$,

- Estimate η_{Σ} by $\hat{\eta}_{\Sigma,apls}$ based on y_{Σ} .
- Estimate η by $\hat{\eta}_{apls} = (\Sigma^{1/2} \otimes I_p) \hat{\eta}_{\Sigma,apls}$; and m by $\hat{m}_{apls} = \tilde{C}^+ \hat{\eta}_{apls}$.
- The previous asymptotic theory carries over to the general Σ model when the loss function is

$$p^{-1}|\hat{\eta}_{\Sigma} - \eta_{\Sigma}|^2 = p^{-1}(\hat{\eta} - \eta)'(\Sigma^{-1} \otimes I_p)(\hat{\eta} - \eta)$$

If Σ is **unknown**, replace it by a consistent estimator $\hat{\Sigma}$ in constructing $\hat{\eta}_{apls}$ and \hat{m}_{apls} .

Remarks on Estimating $\boldsymbol{\Sigma}$

- If Σ̂ is consistent for Σ, the earlier asymptotics for the case
 Σ = I_d can be extended. Loss and estimated risk converge together. Under stronger conditions on Σ̂, the risk, loss and estimated risk converge together.
- When n > p, least squares theory provides the estimator $\hat{\Sigma}_{ls} = (n - p)^{-1} Y' (I_n - CC^+) Y$. This is consistent for Σ when $n - p \to \infty$.
- In the absence of adequate replication, pooling may provide a useful estimator of Σ: fit a plausible linear submodel for M by least squares and construct the least squares estimator of Σ associated with this fit. This Σ̂ will be consistent if its bias tends to zero in the asymptotics.
- Obviously, replication is desirable in estimating Σ .

The Vineyard Data

Grape Harvest Yields

Row *i* of data matrix *Y* reports the grape yields harvested in three different years from physical row *i* of a vineyard. This is a balanced one-way layout with trivariate responses. Both year and row may affect the harvest yields observed. We look for persistent pattern by estimating mean yields.

- In this one-way layout, p = n = 52, d = 3, and $k_0 = 1$. Hence, $S = \{\{\emptyset\}, \{1\}\}, \mathcal{I} = \{i: 1 \le i \le p\}$, and $\mathcal{I}_{\{\emptyset\}} = \{1\}$, $\mathcal{I}_{\{1\}} = \{i: 2 \le i \le p\}$.
- Set the annihilator A_1 to be the second-difference matrix.
- The eigenvectors of A'₁A₁, ordered from smallest to largest eigenvalue, give the basis U that supports spectral representations of the two penalty matrices {Q_s: s ∈ S}.
- Estimate Σ from the residuals after the least squares fit of Y to the first 20 columns of U (pooling strategy).
- Take N_{∅} = 0. Then the candidate PLS estimators do not shrink the mean response vector. Adaptation is over all p.d. affine penalty weights N_{1}.

Some Findings

• $\hat{\Sigma}$ indicates slightly correlated heteroscedastic errors:

$$\hat{\Sigma} = \begin{pmatrix} 0.994 & 0.191 & 0.160 \\ 0.191 & 1.782 & -.268 \\ 0.160 & -.268 & 3.054 \end{pmatrix}$$

• The estimated risks of \hat{M}_{apls} and \hat{M}_{ls} are 0.364 and 3.000. In this example, \hat{M}_{apls} reduces estimated risk more than eightfold!

A Non-statistical Example

Portrait of Kaiser Rudolf II by Hans von Aachen

Superb biased estimator: Kaiser Rudolf II by Giuseppe Arcimboldo