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SP ECM Model

semiparametric ECM

�Xt = ��0Xt�1 + ut

� and � are m� r full rank matrices

� ut is weakly dependent with mean zero

general short memory component ut

� no speci�cation of VAR lags as in
�Xt = ��0Xt�1 +

Pp
i=1 �i�Xt�i + ut

� no speci�cation of the distribution of ut

� allow for unconditional unknown heterogeneity in ut

permit near integration as well as strict unit roots
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Cointegrating rank determination

�tted model
�Xt = ��0Xt�1 + ut

information criteria

IC(r) = log jb� (r) j+ Cnn�1 �2mr � r2� ; 0 � r � m

� b� (r) is the residual covariance matrix from reduced rank regression

� penalty Cn: 2 (AIC), log (n) (BIC), c log log (n) (HQ)

� degrees of freedom: 2mr � r2

br = argmin0�r�m IC(r)
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Outline of Basic Results

�Xt = ��0Xt�1 + ut

IC(r) = log jb� (r) j+ Cnn�1 �2mr � r2�

IC (r) is weakly consistent provided Cn !1 and Cn=n! 0

AIC inconsistent, limit distribution given
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Literature � Order Estimation

Semiparametric approaches

� Phillips (2008) �Unit root model selection�

Parametric approaches & joint order estimation

� Johansen (1988, 1991)
� Phillips and Ploberger (1996), Phillips (1996), Chao and Phillips (1999)
� Phillips & McFarland (1997)

Order selection & nonstationarity

� Tsay (1984), Potscher (1989), Wei (1992), Nielsen (2006), Kapetanios
(2004), Wang & Bessler (2005), Poskitt (2000), Harris and Poskitt
(2004)
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Literature � Time-varying Variance

literature

� classical unit root testing

Hamori and Tokihisa, 1997; Kim et al, 2002; Cavaliere, 2004; Cavaliere
and Taylor, 2007; Beare, 2007

� autoregressive models

Phillips and Xu, 2006; Xu and Phillips, 2008

SP model choice method

� robust to time-varying variance

� no change in implementation
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Contribution

SP ECM: �Xt = ��0Xt�1 + ut

ut standard method our method
valid valid

stationary specify lag length avoid misspeci�cation
easy to implement

time-varying var invalid valid
same implementation
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Reduced Rank Regression

�Xt = ��0Xt�1 + ut

suppose the cointegrating rank is r

for given �

� b� (�) = S01�(�
0S11�)

�1

� b� (�) = S00 � S01�
�
�0S11�

��1
�0S10

� notation

S00 = n�1
Pn

t=1�Xt�X
0
t; S11 = n�1

Pn
t=1Xt�1X

0
t�1;

S10 = n�1
Pn

t=1�XtX
0
t�1; S10 = S001b� = argmin� jb� (�) j; subject to b�0S11b� = Irb� (�) = b�(b�) and b� (r) = b�(b�)
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RRR Estimation �as if model correctly speci�ed

Johansen (1988,1995)

determinantal equation
���S11 � S10S�100 S01�� = 0

� ordered eigenvalues 1 > b�1 > � � � > b�m > 0

� corresponding eigenvectors bV = [bv1; � � � ; bvm]; normalized bybV 0S11 bV = Imb� = [bv1; � � � ; bvr] and jb� (r) j = jS00j�ri=1(1� b�i)
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Information criteria components

criterion has the form

� IC(r) = log(jS00j�ri=1(1� b�i)) + Cnn�1(2mr � r2)
� b�i are ordered solutions of ���S11 � S10S�100 S01�� = 0

�nd SP limits of b�i; for i = 1; :::;m; using limit theory for S11; S10;
S00
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Heuristics

j�S11 � S10S�100 S01j = 0

when Xt is stationary, i.e. r = m

� S11; S10; and S00 are all Op (1)) 0 < �i < 1 for all i

when Xt is full rank integrated, i.e. r = 0

� S11 = Op (n)) �i decreases to 0 at rate n�1 for all i
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Heuristics (cont.)

when 0 < r < m

� �0Xt is stationary ) 0 < �i < 1 for all 1 � i � r

� �0?Xt is an m� r vector of unit root time series

) �i decreases to 0 at rate n�1 for r + 1 � i � m

same asymptotic orders apply when ut is

� weakly dependent

� with time varying variance

KEY: for weak consistency of IC (r), only asymptotic order matters
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Information Criteria

recall IC(r) = log(jS00j�ri=1(1� b�i)) + Cnn�1(2mr � r2)
we want ICr0 (r)� ICr0 (r0) > 0 for any r 6= r0

if r < r0

� ICr0 (r)� ICr0 (r0) =

�
r0X

i=r+1

log(1� �̂i)| {z }
+ve

+ Cnn
�1 (r � r0) (2m� r � r0)| {z }

�ve

� ICr0 (r)� ICr0 (r0) > 0 requires Cnn�1 ! 0 and poor �t dominates
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Information Criteria (cont.)
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if r > r0

� ICr0 (r)� ICr0 (r0) =
rX

i=r0+1

log(1� �̂i)| {z }
�ve; Op(n�1)

+ Cnn
�1 (r � r0) (2m� r � r0)| {z }

+ve
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Consistent Information Criteria

Theorem
IC(r) is weakly consistent for selecting the rank of cointegration provided
Cn !1 and Cn=n! 0:

BIC and HQ are weakly consistent, but AIC is not

AIC limit theory

� no tendency to underestimate

� tendency to overestimate - just as in lag order
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Simulation

m = 2

ut = Aut�1 + "t; ut = "t +B"t�1; ut = Aut�1 + "t +B"t�1

� A =  Im; B = �Im

�  = � = 0:4

"t = g( tn)et and et = iid N (0;�")

� �" = diagf1 + �; 1� �g; and � = :25
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Simulation

choice of variance

1. g2 (r) = �20 +
�
�21 � �20

�
1fr��g; r 2 [0; 1] ;

2. g2 (r) = �20 +
�
�21 � �20

�
1f��r<1��g; r 2 [0; 1] ; � 2 [0; 1=2];

3. g2 (r) = �20 +
�
�21 � �20

�
rm; r 2 [0; 1] :

� In model 1, the break date � takes values within the set f0:1; 0:5; 0:9g

� In model 2, � takes value from f0:1; 0:4g

� In model 3, we allow for both linear trend and quadratic trend by
setting m 2 f1; 2g

� � = �1=�0 2 f0:2; 5g
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Figure: ut is AR(1); �1 = �0; and n = 100:
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Table 1. ut follows an AR(1), g (r)=�20 +
�
�21 � �20

�
1f��r<1��g

n = 400
r0 = 0 r0 = 1 r0 = 2

� � br AIC BIC AIC BIC AIC BIC
0.1 0.2 0 0.50 0.93 0.00 0.00 0.00 0.00

1 0.38 0.06 0.74 0.96 0.00 0.00
2 0.11 0.01 0.26 0.04 1.00 1.00

5 0 0.24 0.65 0.00 0.00 0.00 0.00
1 0.64 0.34 0.75 0.90 0.00 0.00
2 0.12 0.01 0.25 0.10 1.00 1.00
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Table 2. ut follows an AR(1), g (r)=�20 +
�
�21 � �20

�
1f��r<1��g

n = 400
r0 = 0 r0 = 1 r0 = 2

� � br AIC BIC AIC BIC AIC BIC
0.4 0.2 0 0.38 0.84 0.00 0.00 0.00 0.00

1 0.44 0.14 0.65 0.92 0.00 0.00
2 0.18 0.02 0.35 0.08 1.00 1.00

5 0 0.33 0.82 0.00 0.00 0.00 0.00
1 0.57 0.17 0.75 0.93 0.00 0.00
2 0.09 0.01 0.25 0.07 1.00 1.00
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Main results

semiparametric cointegrating rank selection �Xt = ��0Xt�1 + ut

br = argmin0�r�m {IC(r) = log jb� (r) j+ Cnn�1 �2mr � r2�g is
weakly consistent provided

� Cn !1
� Cn=n! 0

method is robust to persistent heterogeneity and near integration

easy to implement in practical work
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