Semiparametric Cointegrating Rank Selection

Xu Cheng

Peter C. B. Phillips

Department of Economics Yale University

Workshop on Current Trends and Challenges in Model Selection and Related Areas Vienna, July 2008

4 3 5 4 3

Papers and Outline

Cheng & Phillips (2008a) "Semiparametric cointegrating rank selection"

- consistent cointegrating rank estimation by information criteria
- asymptotics for weakly dependent innovations
- simulation

Cheng & Phillips (2008b) "Cointegrating rank selection in models with time varying variance"

- robust to unconditional heterogeneity of unknown form
- asymptotics under time varying variances
- empirical application on exchange rate dynamics and simulation

・ 同 ト ・ ヨ ト ・ ヨ ト

Papers and Outline

• Cheng & Phillips (2008a)

"Semiparametric cointegrating rank selection"

- consistent cointegrating rank estimation by information criteria
- asymptotics for weakly dependent innovations
- simulation
- Cheng & Phillips (2008b)
 "Cointegrating rank selection in models with time varying variance"
 - robust to unconditional heterogeneity of unknown form
 - asymptotics under time varying variances
 - empirical application on exchange rate dynamics and simulation

直 ト イヨ ト イヨ ト

Papers and Outline

• Cheng & Phillips (2008a)

"Semiparametric cointegrating rank selection"

- consistent cointegrating rank estimation by information criteria
- asymptotics for weakly dependent innovations
- simulation
- Cheng & Phillips (2008b)

"Cointegrating rank selection in models with time varying variance"

- robust to unconditional heterogeneity of unknown form
- asymptotics under time varying variances
- empirical application on exchange rate dynamics and simulation

SP ECM Model

semiparametric ECM

$$\Delta X_t = \alpha \beta' X_{t-1} + u_t$$

 α and β are $m\times r$ full rank matrices

- u_t is weakly dependent with mean zero

- general short memory component u_t
 - no specification of VAR lags as in $\Delta X_t = \alpha \beta' X_{t-1} + \sum_{i=1}^p \Gamma_i \Delta X_{t-i} + u_t$
 - no specification of the distribution of u_t
 - allow for unconditional unknown heterogeneity in u_t
- permit near integration as well as strict unit roots

SP ECM Model

semiparametric ECM

$$\Delta X_t = \alpha \beta' X_{t-1} + u_t$$

 α and β are $m\times r$ full rank matrices

- u_t is weakly dependent with mean zero

- general short memory component u_t
 - no specification of VAR lags as in $\Delta X_t = \alpha \beta' X_{t-1} + \sum_{i=1}^p \Gamma_i \Delta X_{t-i} + u_t$
 - no specification of the distribution of u_t
 - allow for unconditional unknown heterogeneity in u_t
- permit near integration as well as strict unit roots

fitted model

$$\Delta X_t = \alpha \beta' X_{t-1} + u_t$$

$$IC(r) = \log |\widehat{\Sigma}(r)| + C_n n^{-1} \left(2mr - r^2\right), \quad 0 \le r \le m$$

- $\widehat{\Sigma}\left(r\right)$ is the residual covariance matrix from reduced rank regression
- penalty C_n : 2 (AIC), $\log(n)$ (BIC), $c \log \log(n)$ (HQ)
- degrees of freedom: $2mr r^2$
- $\hat{r} = \arg\min_{0 \le r \le m} IC(r)$

fitted model

$$\Delta X_t = \alpha \beta' X_{t-1} + u_t$$

$$IC(r) = \log \left|\widehat{\Sigma}(r)\right| + C_n n^{-1} \left(2mr - r^2\right), \quad 0 \le r \le m$$

- $\widehat{\Sigma}\left(r\right)$ is the residual covariance matrix from reduced rank regression
- penalty C_n : 2 (AIC), $\log(n)$ (BIC), $c \log \log(n)$ (HQ)
- degrees of freedom: $2mr r^2$
- $\hat{r} = \arg\min_{0 \le r \le m} IC(r)$

fitted model

$$\Delta X_t = \alpha \beta' X_{t-1} + u_t$$

$$IC(r) = \log |\widehat{\Sigma}(r)| + C_n n^{-1} (2mr - r^2), \quad 0 \le r \le m$$

- $\widehat{\Sigma}\left(r\right)$ is the residual covariance matrix from reduced rank regression
- penalty C_n : 2 (AIC), $\log(n)$ (BIC), $c \log \log(n)$ (HQ)
- degrees of freedom: $2mr r^2$
- $\hat{r} = \arg\min_{0 \le r \le m} IC(r)$

fitted model

$$\Delta X_t = \alpha \beta' X_{t-1} + u_t$$

$$IC(r) = \log |\widehat{\Sigma}(r)| + C_n n^{-1} (2mr - r^2), \quad 0 \le r \le m$$

- $\widehat{\Sigma}\left(r\right)$ is the residual covariance matrix from reduced rank regression
- penalty C_n : 2 (AIC), $\log(n)$ (BIC), $c \log \log(n)$ (HQ)
- degrees of freedom: $2mr r^2$
- $\hat{r} = \arg\min_{0 \le r \le m} IC(r)$

Outline of Basic Results

$$\Delta X_t = \alpha \beta' X_{t-1} + u_t$$
$$IC(r) = \log |\widehat{\Sigma}(r)| + C_n n^{-1} (2mr - r^2)$$

• $IC\left(r
ight)$ is weakly consistent provided $C_{n}
ightarrow\infty$ and $C_{n}/n
ightarrow0$

• AIC inconsistent, limit distribution given

A B + A B +

3

Literature — Order Estimation

- Semiparametric approaches
 - Phillips (2008) "Unit root model selection"
- Parametric approaches & joint order estimation
 - Johansen (1988, 1991)
 - Phillips and Ploberger (1996), Phillips (1996), Chao and Phillips (1999)
 - Phillips & McFarland (1997)
- Order selection & nonstationarity
 - Tsay (1984), Potscher (1989), Wei (1992), Nielsen (2006), Kapetanios (2004), Wang & Bessler (2005), Poskitt (2000), Harris and Poskitt (2004)

ヨッ イヨッ イヨッ

Literature — Time-varying Variance

literature

classical unit root testing

Hamori and Tokihisa, 1997; Kim *et al*, 2002; Cavaliere, 2004; Cavaliere and Taylor, 2007; Beare, 2007

- autoregressive models

Phillips and Xu, 2006; Xu and Phillips, 2008

- SP model choice method
 - robust to time-varying variance
 - no change in implementation

Contribution

SP ECM:
$$\Delta X_t = \alpha \beta' X_{t-1} + u_t$$

\mathbf{u}_t	standard method	our method		
stationary	valid specify lag length	valid avoid misspecification easy to implement		
time-varying var	invalid	valid same implementation		

<ロ> <同> <同> < 同> < 同>

æ

Reduced Rank Regression

$$\Delta X_t = \alpha \beta' X_{t-1} + u_t$$

- ${\ensuremath{\, \circ }}$ suppose the cointegrating rank is r
- \bullet for given β

$$- \widehat{\alpha}(\beta) = S_{01}\beta(\beta'S_{11}\beta)^{-1}$$

$$- \widehat{\Sigma} \left(\beta \right) = S_{00} - S_{01} \beta \left(\beta' S_{11} \beta \right)^{-1} \beta' S_{10}$$

notation

$$\begin{split} S_{00} &= n^{-1} \sum_{t=1}^{n} \Delta X_{t} \Delta X'_{t}, \qquad S_{11} = n^{-1} \sum_{t=1}^{n} X_{t-1} X'_{t-1}, \\ S_{10} &= n^{-1} \sum_{t=1}^{n} \Delta X_{t} X'_{t-1}, \qquad S_{10} = S'_{01} \end{split}$$

$$\bullet \ \widehat{\beta} &= \arg \min_{\beta} |\widehat{\Sigma} \left(\beta\right)|, \text{ subject to } \widehat{\beta}' S_{11} \widehat{\beta} = I_{r} \\ \widehat{\alpha} \left(\beta\right) &= \widehat{\alpha}(\widehat{\beta}) \text{ and } \widehat{\Sigma} \left(r\right) = \widehat{\Sigma}(\widehat{\beta}) \end{split}$$

э

RRR Estimation – as if model correctly specified

- Johansen (1988,1995)
- determinantal equation $\left|\lambda S_{11} S_{10}S_{00}^{-1}S_{01}\right| = 0$
 - ordered eigenvalues $1>\widehat{\lambda}_1>\dots>\widehat{\lambda}_m>0$
 - corresponding eigenvectors $\widehat{V}=[\widehat{v}_1,\cdots,\widehat{v}_m],$ normalized by $\widehat{V}'S_{11}\widehat{V}=I_m$
- $\widehat{\beta} = [\widehat{v}_1, \cdots, \widehat{v}_r]$ and $|\widehat{\Sigma}(r)| = |S_{00}| \prod_{i=1}^r (1 \widehat{\lambda}_i)$

Information criteria components

criterion has the form

$$- IC(r) = \log(|S_{00}| \prod_{i=1}^{r} (1 - \hat{\lambda}_i)) + C_n n^{-1} (2mr - r^2)$$

- $\hat{\lambda}_i$ are ordered solutions of $|\lambda S_{11} - S_{10} S_{00}^{-1} S_{01}| = 0$

• find SP limits of $\widehat{\lambda}_{i,}$ for i=1,...,m, using limit theory for $S_{11},\,S_{10},\,S_{00}$

Heuristics

- $|\lambda S_{11} S_{10}S_{00}^{-1}S_{01}| = 0$
- when X_t is stationary, i.e. r = m- S_{11}, S_{10} , and S_{00} are all $O_p(1) \Rightarrow 0 < \lambda_i < 1$ for all i
- when X_t is full rank integrated, i.e. r = 0

- $S_{11} = O_p(n) \Rightarrow \lambda_i$ decreases to 0 at rate n^{-1} for all i

Heuristics (cont.)

- ${\bullet} \ {\rm when} \ 0 < r < m$
 - $\beta' X_t$ is stationary $\Rightarrow 0 < \lambda_i < 1$ for all $1 \le i \le r$
 - $\beta'_{\perp} X_t$ is an m-r vector of unit root time series
 - $\Rightarrow \lambda_i \text{ decreases to } 0$ at rate n^{-1} for $r+1 \leq i \leq m$

- same asymptotic orders apply when u_t is
 - weakly dependent
 - with time varying variance

• KEY: for weak consistency of IC(r), only asymptotic order matters

伺 ト イヨト イヨト

Heuristics (cont.)

- $\bullet \ {\rm when} \ 0 < r < m$
 - $\beta' X_t$ is stationary $\Rightarrow 0 < \lambda_i < 1$ for all $1 \le i \le r$
 - $-\beta'_{\perp}X_t$ is an m-r vector of unit root time series

 $\Rightarrow \lambda_i \text{ decreases to } 0$ at rate n^{-1} for $r+1 \leq i \leq m$

- same asymptotic orders apply when u_t is
 - weakly dependent
 - with time varying variance

• KEY: for weak consistency of IC(r), only asymptotic order matters

• • = • • = •

Heuristics (cont.)

- ${\bullet} \ {\rm when} \ 0 < r < m$
 - $\beta' X_t$ is stationary $\Rightarrow 0 < \lambda_i < 1$ for all $1 \le i \le r$
 - $\beta'_{\perp} X_t$ is an m r vector of unit root time series

 $\Rightarrow \lambda_i \text{ decreases to } 0$ at rate n^{-1} for $r+1 \leq i \leq m$

- same asymptotic orders apply when u_t is
 - weakly dependent
 - with time varying variance
- KEY: for weak consistency of IC(r), only asymptotic order matters

Information Criteria

• recall
$$IC(r) = \log(|S_{00}| \prod_{i=1}^{r} (1 - \widehat{\lambda}_i)) + C_n n^{-1} (2mr - r^2)$$

• we want $IC_{r_{0}}\left(r
ight)-IC_{r_{0}}\left(r_{0}
ight)>0$ for any $r\neq r_{0}$

• if
$$r < r_0$$

• $IC_{r_0}(r) - IC_{r_0}(r_0) =$
 $-\sum_{i=r+1}^{r_0} \log(1 - \hat{\lambda}_i) + \underbrace{C_n n^{-1} (r - r_0) (2m - r - r_0)}_{-ve}$

 $\circ~IC_{r_{0}}\left(r\right)-IC_{r_{0}}\left(r_{0}\right)>0$ requires $C_{n}n^{-1}\rightarrow0$ and poor fit dominates

Information Criteria (cont.)

• recall
$$IC(r) = \log(|S_{00}| \prod_{i=1}^{r} (1 - \widehat{\lambda}_i)) + C_n n^{-1} (2mr - r^2)$$

• we want $IC_{r_{0}}\left(r
ight)-IC_{r_{0}}\left(r_{0}
ight)>0$ for any $r\neq r_{0}$

• if
$$r > r_0$$

• $IC_{r_0}(r) - IC_{r_0}(r_0) =$

$$\underbrace{\sum_{i=r_0+1}^{r} \log(1-\hat{\lambda}_i)}_{-\text{ve, } O_p(n^{-1})} + \underbrace{C_n n^{-1} (r-r_0) (2m-r-r_0)}_{+\text{ve}}$$

 $\circ~IC_{r_{0}}\left(r\right)-IC_{r_{0}}\left(r_{0}\right)>0$ requires $C_{n}\rightarrow\infty$ and penalty dominates

同 ト イヨ ト イヨ ト ヨ うくで

Consistent Information Criteria

Theorem

IC(r) is weakly consistent for selecting the rank of cointegration provided $C_n \rightarrow \infty$ and $C_n/n \rightarrow 0$.

• BIC and HQ are weakly consistent, but AIC is not

AIC limit theory

- no tendency to underestimate
- tendency to overestimate just as in lag order

Consistent Information Criteria

Theorem

IC(r) is weakly consistent for selecting the rank of cointegration provided $C_n \rightarrow \infty$ and $C_n/n \rightarrow 0$.

- BIC and HQ are weakly consistent, but AIC is not
- AIC limit theory
 - no tendency to underestimate
 - tendency to overestimate just as in lag order

Simulation

 $\bullet \ m=2$

•
$$u_t = Au_{t-1} + \varepsilon_t, u_t = \varepsilon_t + B\varepsilon_{t-1}, u_t = Au_{t-1} + \varepsilon_t + B\varepsilon_{t-1}$$

- $A = \psi I_m, B = \phi I_m$
- $\psi = \phi = 0.4$

•
$$\varepsilon_t = g(\frac{t}{n})e_t$$
 and $e_t = iid \ N(0, \Sigma_{\varepsilon})$
- $\Sigma_{\varepsilon} = diag\{1 + \theta, 1 - \theta\}$, and $\theta = .25$

・ロン ・部 と ・ ヨン ・ ヨン …

æ

Simulation

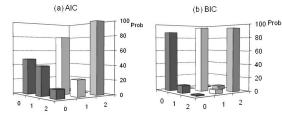
choice of variance

$$\begin{split} & 1. \ g^2 \left(r \right) = \sigma_0^2 + \left(\sigma_1^2 - \sigma_0^2 \right) \mathbf{1}_{\{r \geq \tau\},} \quad r \in [0, 1] \,, \\ & 2. \ g^2 \left(r \right) = \sigma_0^2 + \left(\sigma_1^2 - \sigma_0^2 \right) \mathbf{1}_{\{\tau \leq r < 1 - \tau\},} \quad r \in [0, 1] \,, \ \tau \in [0, 1/2], \\ & 3. \ g^2 \left(r \right) = \sigma_0^2 + \left(\sigma_1^2 - \sigma_0^2 \right) r^m, \quad r \in [0, 1] \,. \end{split}$$

- In model 1, the break date τ takes values within the set $\{0.1, 0.5, 0.9\}$
- In model 2, au takes value from $\{0.1, 0.4\}$
- In model 3, we allow for both linear trend and quadratic trend by setting $\ m \in \{1,2\}$

$$- \ \delta = \sigma_1 / \sigma_0 \in \{0.2, 5\}$$

• • = • • = •



(c) HQ

イロト イポト イヨト イヨト

э

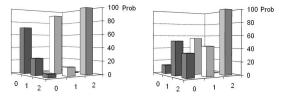


Figure: u_t is AR(1), $\sigma_1 = \sigma_0$, and n = 100.

			n = 400						
			$r_0 = 0$		r_0 =	$r_0 = 1$		$r_0 = 2$	
au	δ	\widehat{r}	AIC	BIC	AIC	BIC	AIC	BIC	
0.1	0.2	0	0.50	0.93	0.00	0.00	0.00	0.00	
		1	0.38	0.06	0.74	0.96	0.00	0.00	
		2	0.11	0.01	0.26	0.04	1.00	1.00	
	5	0	0.24	0.65	0.00	0.00	0.00	0.00	
		1	0.64	0.34	0.75	0.90	0.00	0.00	
		2	0.12	0.01	0.25	0.10	1.00	1.00	

Table 1. u_t follows an AR(1), $g(r) = \sigma_0^2 + (\sigma_1^2 - \sigma_0^2) \mathbf{1}_{\{\tau \le r < 1 - \tau\}}$

э

-∢ ≣ ▶

			n = 400						
			$r_0 = 0$		r_0 =	$r_{0} = 1$		$r_0 = 2$	
au	δ	\widehat{r}	AIC	BIC	AIC	BIC	AIC	BIC	
0.4	0.2	0	0.38	0.84	0.00	0.00	0.00	0.00	
		1	0.44	0.14	0.65	0.92	0.00	0.00	
		2	0.18	0.02	0.35	0.08	1.00	1.00	
	5	0	0.33	0.82	0.00	0.00	0.00	0.00	
		1	0.57	0.17	0.75	0.93	0.00	0.00	
		2	0.09	0.01	0.25	0.07	1.00	1.00	

Table 2. u_t follows an AR(1), $g(r) = \sigma_0^2 + (\sigma_1^2 - \sigma_0^2) \mathbf{1}_{\{\tau \le r < 1 - \tau\}}$

э

-∢ ≣ ▶

Main results

- semiparametric cointegrating rank selection $\Delta X_t = \alpha \beta' X_{t-1} + u_t$
- $\widehat{r} = \arg \min_{0 \le r \le m} \{ IC(r) = \log |\widehat{\Sigma}(r)| + C_n n^{-1} (2mr r^2) \}$ is weakly consistent provided
 - $-C_n \to \infty$ $-C_n/n \to 0$
- method is robust to persistent heterogeneity and near integration
- easy to implement in practical work