On the Choice of Parametric Families of Copulas

Radu Craiu

Department of Statistics University of Toronto

Collaborators:

Elif Acar, University of Toronto Mariana Craiu, University Politehnica, Bucharest Fang Yao, University of Toronto

Vienna, July 2008

- Brief Review of Copulas
 - What is a Copula and Why should we care?
- 2 Copula misspecification
 - Simulation study of the effects of copula misspecification
- 3 Choice of a Copula Family
 - A nonparametric estimate of distributional distances

Brief Review of Copulas

- Copulas present one possible approach to model dependence. • If X, Y are continuous random variables with distribution
- functions (df) F_X and, respectively, F_Y we specify the joint df using the copula $C: [0,1] \times [0,1] \rightarrow [0,1]$ such that

$$F_{XY}(F_X^{-1}(u), F_Y^{-1}(v)) = \Pr(X \le F_X^{-1}(u), Y \le F_Y^{-1}(v)) = C(u, v).$$

- The copula C bridges the marginal distributions of X and Y. Interesting: connection between dependence structures and various families of copulas.
- Popular class: Archimedean copulas

$$C(u,v) = \phi^{[-1]}(\phi(u) + \phi(v)),$$

where ϕ is a continuous, strictly decreasing function $\phi: [0,1] \rightarrow [0,\infty]$ and

$$\phi^{[-1]} = \begin{cases} \phi^{-1}(t) & \text{if } 0 \le t \le \phi(0) \\ \phi(0) & \text{if } \phi(0) \le t \le \infty. \end{cases}$$

Copulas (cont'd)

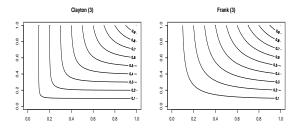
• Examples:

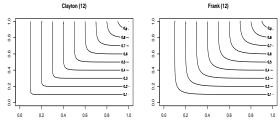
Clayton's copula:
$$C(u,v) = \left[\max\left(u^{-\theta} + v^{-\theta} - 1,0\right)\right]^{-1/\theta}$$
. Frank's copula: $C(u,v) = -\frac{1}{\theta}\ln\left[1 + \frac{(e^{-\theta u} - 1)(e^{-\theta v} - 1)}{e^{-\theta} - 1}\right]$.

- For the purpose of inference, given a family of copulas has been selected, of interest is the estimation of θ as well as the marginal distributions' parameters, say λ_X, λ_Y .
- The effect of marginal models misspecification has been well documented. Also important is the effect of copula misspecification, especially when of interest are conditional estimates such as E[X|Y=y], Var(X|Y=y).
- Central to the performance of the model is the correct specification of the copula family.

Copulas (cont'd)

Contour plots of the bivariate cdf:





Copula Misspecification: A simulation study

- We assume that the marginals are known.
- We generate data following the bivariate Clayton's density.
- We fit a model using Frank's copula. We are interested in evaluating the bias for conditional mean and variance estimators.
- Each simulation study has a sample size of n = 500 and we replicate each study K = 200 times.
- The conditional means are computed via Monte Carlo using a sample of size M = 5000.

Simulation Results

Clayton's $\theta=3$; $F_X={\sf Exp}(2)$, $F_Y={\sf Exp}(1)$							
<i>y</i> ₀	0.5	1.0	1.5	2.5			
$B(\mu_{y_0})$	-0.067 (0.009)			0.140 (0.037)			
$B(\sigma_{y_0}^2)$	0.142 (0.026)	0.364 (0.043)	0.646 (0.080)	1.041 (0.147)			
Clayton's $\theta = 3$; $F_X = F_Y = \text{Weibull}(1,2)$							
<i>y</i> ₀	0.5	1.0	1.5	2.5			
$B(\mu_{y_0})$,	-0.285 (0.048)	\ /	-0.170 (0.071)			
$B(\sigma_{y_0}^2)$	-0.061(0.018)	-0.647 (0.209)	-1.036 (0.279)	-1.030 (0.400)			
Clayton's $\theta = 12$; $F_X = F_Y = \text{Weibull}(1, 2)$							
<i>y</i> ₀	0.5	1.0	1.5	2.5			
$B(\mu_{y_0})$	0.011 (0.012)	-0.008(0.016)	-0.035 (0.023)	-0.118 (0.047)			
$B(\sigma_{y_0}^2)$	0.056 (0.006)	0.076 (0.014)	0.050 (0.043)	-0.294 (0.095)			

Outline of the approach proposed

- Problem: Given a sample $\{x_i, y_i\}_{1 \le i \le n}$ choose the family of copulas that best approximates the true unknown joint density $c^*(x, y)$.
- Assume marginals are known and (without loss of generality)
 Uniform(0,1).
- Compute a nonparametric estimate of the two-dimensional density.
- Among a set of possible families find the one who is closest (wrt a certain distributional distance) to the nonparametric estimate.
- Compare two different discrepancies: Kullback-Leibler and Hellinger.

Nonparametric Estimate

- A sample of size *n* from c^* : $\{(u_i, v_i) \in [0, 1]^2 : 1 \le i \le n\}$.
- The kernel density is defined by $\hat{c}^*(x; H) = n^{-1} \sum_{i=1}^n K_H(x X_i)$, where $x = (x_1, x_2)^T$, $X_i = (u_i, v_i)$ and $K_H(x) = |H|^{-1/2} K(H^{-1/2}x)$.
- *H* is non-diagonal since there is a large probability mass oriented away from the coordinate directions
- *H* is data-driven (least squares cross-validation).

Distributional Distances

• Kullback-Leibler discrepancy is defined as

$$KL(f,g) = \int \log(f(x)/g(x))f(x)dx.$$

The Hellinger distance is

$$HE^{2}(f,g) = \int f(x) \left[1 - \frac{\sqrt{g(x)}}{\sqrt{f(x)}}\right]^{2} dx.$$

Computing the distance

- Two families of copula densities $A = \{c_{\alpha} : \alpha \in A\}$ and $B = \{c_{\beta} : \beta \in B\}$, where α and β are copula parameters.
- Find the MLE's $\hat{\alpha}$ and $\hat{\beta}$.
- ullet Generate a sample $\{(ilde{u}_i, ilde{v}_i):1\leq i\leq m\}$ drawn from $c_{\hat{lpha}}$
- Compute

$$\widehat{KL}(c_{\hat{\theta}}, \hat{c}^*) = \frac{1}{m} \sum_{i=1}^{m} c_{\hat{\theta}}(\tilde{u}_i, \tilde{v}_i) [\log(c_{\hat{\theta}}(\tilde{u}_i, \tilde{v}_i)) - \log(\hat{c}^*(\tilde{u}_i, \tilde{v}_i))],$$

$$\theta = \alpha, \beta.$$

Similarly for the Hellinger distance:

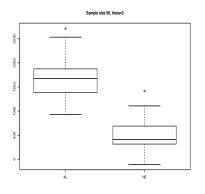
$$\widehat{HE^2}(c_{\hat{\theta}}, \hat{c}^*) = \frac{1}{m} \sum_{i=1}^m \left[1 - \frac{\sqrt{\hat{c}^*(\tilde{u}_i, \tilde{v}_i)}}{\sqrt{c_{\hat{\theta}}(\tilde{u}_i, \tilde{v}_i)}} \right]^2, \quad \theta = \alpha, \beta.$$

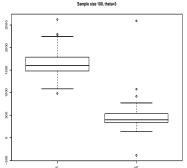
Simulation Results

$Method \backslash n$	50	100	300	500			
Clayton's $\theta=3$							
KL	100	100	100	100			
HE	99	99	100	100			
Clayton's $\theta = 8$							
KL	100	100	100	100			
HE	100	100	100	100			
Clayton's $ heta=12$							
KL	100	100	100	100			
HE	100	100	100	100			

Further Comparison

Compare difference in distances measured by KL and HE ($\theta = 3$).





Further Comparison

Difference in distances measured by KL and HE ($\theta = 8, 12$).

