On the Optimum Number of Hypotheses to Test when the Number of Observations is Limited
 A. Futschik and M. Posch

Vienna University \& Medical Univ. of Vienna

A Main Goal in Statistics

- Extract as much information as possible from a limited number of observations
- In the context of Multiple Hypothesis Testing: Reject (correctly!) as many null hypotheses as possible while still ensuring some global control of the type I error.

Much work has been done to derive multiple test procedures that achieve this goal!
We address issue from a different as usual point of view ...

Our Framework

Consider situation where ...

- multiple hypotheses are to be tested
- there is control at the design stage concerning how many hypotheses will be tested
- overall number of observations is limited by some constant m
- there is control at the design stage concerning the allocation of the observations among the hypotheses to be tested

Some Applications

- Clinical trials with subgroups defined by age, treatment etc.
- Crop variety selection
- Microarrays
- Discrete event systems

Our Goal

Given

- a maximum overall number of observations,
- a certain multiple test procedure

Maximize (in number k of considered hypotheses):
expected number of correct rejections

Outline

- Framework of optimization problem
- Optimization w.r.t. a reference alternative
- Optimum number of hypotheses when controlling the family-wise error (Bonferroni, Bonferroni-Holm, Dunnett)
- Optimum number of hypotheses when controlling the false discovery rate (Benjamini-Hochberg)
- Optimization w.r.t. a composite alternative
- Classification Procedures

The Optimization Problem

- Total of m observations and K potential hypotheses pairs available.
- Focus on hypotheses of type $H_{0, i}: \theta_{i}=0$ vs. $H_{1, i}: \theta_{i}>0,(1 \leq i \leq K)$.
- If k hypothesis pairs selected at random, m / k observations available for each hypothesis pair (up to round off differences).
- Choose k to maximize expected number of correct rejections $E N_{k}$.

General Observations

- If no correction for multiplicity applied, k as large as possible is often optimal.
- With correction for multiplicity, there is usually a unique optimum k.

Bonferroni Tests

Define

$$
\Delta_{m}:=\theta^{(1)} \frac{\sqrt{m}}{\sigma}
$$

Then, for normally $N\left(0, \sigma^{2}\right)$ distributed data and one-sided Bonferroni z-tests:

$$
E\left(N_{k}\right)=q k\left(1-\Phi_{\left(\Delta_{m} / \sqrt{k}, 1\right)}\left(z_{\alpha / k}\right)\right)
$$

where q is the expected proportion of incorrect null hypotheses.

Example: Bonferroni z- and t-tests

The expected number of correctly rejected null hypotheses for given k and the parameters $m=100000, q=0.01$, $\alpha=0.05$, and $\theta=\sigma$ under H_{1}.

Optimum Number of Hypotheses

Theorem: Define

$$
k_{m}:=\frac{\Delta_{m}^{2}}{2 \log \left(\Delta_{m}^{2}\right)}
$$

Then, as $m \rightarrow \infty$, the optimum number of hypotheses to test is

$$
k_{m}^{*}=k_{m}[1+o(1)],
$$

with remainder term being negative.

Numerical Example

The optimum number of hypotheses k_{m}^{*} and the power (in \%) to reject an individual incorrect null hypotheses:

Δ_{m}								
	5	10	20	50	100	1000		
α	0.01	$3(57)$	$8(70)$	$25(74)$	$124(76)$	$425(78)$		
	$3(69)$	$9(71)$	$29(72)$	$138(75)$	$469(77)$	$30883(81)$		
	0.05	$4(60)$	$11(66)$	$33(70)$	$152(74)$	$508(76)$		

Bonferroni-Holm Tests

Bonferroni vs. Bonferroni-Holm Tests:
$\theta=1, m=200, \alpha=0.025$, and $q=0.5$.

Control of False Discovery Rate

Benjamini-Hochberg:

$$
F D R=E\left(\frac{V}{\max (R, 1)}\right)
$$

Asymptotically equivalent problem (see Genovese and Wasserman (2002)):

$$
E\left(N_{k}\right)=q k\left(1-\Phi_{\left(\Delta_{m} / \sqrt{k}, 1\right)}\left(z_{u}\right)\right) \rightarrow \max _{k}
$$

Benjamini-Hochberg

Theorem: Asymptotically, the optimum solution is

$$
k_{m}^{*}=\frac{\Delta_{m}^{2}}{\left(z_{u_{\beta}^{*}}-z_{\beta u_{\beta}^{*}}\right)^{2}},
$$

where u_{β}^{*} maximizes

$$
\frac{u}{\left(z_{u}-z_{\beta u}\right)^{2}} .
$$

Asymptotic vs. Simulated Objective Function

The parameters: $\theta=1, m=200, \alpha=0.025$, and $q=0.5$.

t-Tests I

Bonferroni-tests:

$$
\mathbf{E} N_{k}^{(t)}=q k\left[1-F_{m / k, \Delta_{m} / \sqrt{k}}^{(t)}\left(t_{\alpha / k, m / k}\right)\right],
$$

with $F_{\nu, \delta}^{(t)}$ non-central t-cdf with $\nu-1$ df and noncentrality parameter δ, and $t_{\gamma, \nu} 1-\gamma$ quantile of standard t-distribution with $\nu-1$ degrees of freedom.
Benjamini-Hochberg procedure:

$$
\mathbf{E} N_{k}^{(t)}=q k\left[1-F_{m / k, \Delta_{m} / \sqrt{k}}^{(t)}\left(t_{u, m / k}\right)\right] .
$$

t-Tests II

Theorem: Let $\theta^{(1)}>0$, and define $\theta_{m}=\theta / \sqrt{m}$. Assume that

$$
\Delta_{m}=\frac{\theta_{m} \sqrt{m}}{\sigma}=\frac{\theta^{(1)}}{\sigma}
$$

Then, for $m \rightarrow \infty$, the optimum solution for t-tests converges to that for z-tests.

Possible Rejections for z - and t-Test

Parameters: $m=100000, q=0.01, \alpha=0.05$ and $\theta^{(1)} / \sigma=1$.

Composite Alternatives I

Bonferroni z-Tests:

$$
E N_{k}=q k \int_{0}^{\infty}\left(1-\Phi\left(z_{\alpha / k}-\frac{\Delta_{m}(\theta)}{\sqrt{k}}\right)\right) d F(\theta)
$$

where F conditional c.d.f. of θ given $\theta>0$,
$q=P(\theta>0)$, and $\Delta_{m}(\theta)=\theta \frac{\sqrt{m}}{\sigma}$.

Composite Alternatives II

Theorem: Assume that F is continuous and define

$$
k_{m, F}:=\frac{m d_{F}^{2} / \sigma^{2}}{2 \log \left(m d_{F}^{2} / \sigma^{2}\right)},
$$

where d_{F} maximizes

$$
d^{2}[1-F(d)]
$$

Assuming that $d^{2}(1-F(d)) \rightarrow 0$ as $d \rightarrow \infty$, optimum solution $k_{m, F}^{*}$ satisfies

$$
k_{m, F}^{*}=k_{m, F}(1+o(1))
$$

Composite Alternatives III

Parameters: $m=100000, q=0.01, \alpha=0.05$.
Effect size under alternative $N(0,1.2)$ distributed.

Composite Alternatives IV

Similar result can be obtained for Benjamini-Hochberg procedure ...

Classification Procedures I

Classification between $\theta=\theta_{0}$ and $\theta=\theta_{1}$ Minimize

$$
k\left(w_{1} q\left[1-g_{k}\left(\theta_{1}\right)\right]+w_{0}(1-q) g_{k}\left(\theta_{0}\right)\right),
$$

with $g_{k}(\theta)$ probability of deciding for $\theta_{(1)}$ under θ.
For fixed k, problem equivalent to maximizing

$$
U(k)=k\left(w_{1} q g_{k}\left(\theta_{1}\right)-w_{0}(1-q) g_{k}\left(\theta_{0}\right)\right) .
$$

Classification Procedures II

Theorem: For Bayes-classifier, normal data and $r=w_{0}(1-q) /\left(w_{1} q\right)$:
If $r>1$, then optimum k satisfies

$$
k=\left(\frac{\Delta_{m}}{x_{r}}\right)^{2}
$$

where x_{r} is the solution of
$0=x \varphi[x-c(r, x)] / 2-\Phi[x-c(r, x)]+r \Phi[-c(r, x)]$,
with $c(r, x)=\log (r) / x+x / 2$, and
$\Delta_{m}=\theta_{1}-\theta_{0} \sqrt{m} / \sigma$.

Objective Function U(k)

Parameters $m=100, q=0.5, w_{0}=3, w_{1}=1$, and $\theta^{(1)} / \sigma=1 / 2$.

Summary

- Given a limited maximum number of observations, the number of possible rejections depends considerably on the number of considered hypotheses.
- With a good design involving an appropriate allocation of the observations to the hypotheses, a lot more can be gained than by using a more sophisticated multiple test procedure.
- For more details see: On the Optimum Number of Hypotheses to Test when the Number of Observations is Limited. (Futschik \& Posch (2005))

