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| A Main.Goal in Statistics

# Extract as much information as possible from
a limited number of observations

» |n the context of Multiple Hypothesis Testing:
Reject (correctly!) as many null hypotheses
as possible while still ensuring some global
control of the type | error.

Much work has been done to derive multiple test
procedures that achieve this goal!
We address issue from a different as usual point of view ...
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| Our Framework

Consider situation where ...
» multiple hypotheses are to be tested

» there Is control at the design stage
concerning how many hypotheses will be
tested

» overall number of observations is limited by
some constant m

» there is control at the design stage
concerning the allocation of the observations

among the hypotheses to be tested I






| Some Applications

» Clinical trials with subgroups defined by age,
treatment etc.

» Crop variety selection
» Microarrays
» Discrete event systems



| Our Goal

Given
# a maximum overall number of observations,
# a certain multiple test procedure

Maximize (in number k of considered
hypotheses):
expected number of correct rejections
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| Outline

» Framework of optimization problem

» Optimization w.r.t. a reference alternative

» Optimum number of hypotheses when
controlling the family-wise error
(Bonferroni, Bonferroni—Holm, Dunnett)

» Optimum number of hypotheses when
controlling the false discovery rate
(Benjamini—Hochberg)

» Optimization w.r.t. a composite alternative

» Classification Procedures I



The Optimization Problem

» Total of m observations and K potential
hypotheses pairs available.

# Focus on hypotheses of type
H()yZ'ZQZ'IOVS. HLZ'ZH?; > 0, (1 SZSK)

» If £ hypothesis pairs selected at random, m/k
observations available for each hypothesis
pair (up to round off differences).

» Choose £ to maximize expected number of

correct rejections E'Ny.



| General Observations

»# |If no correction for multiplicity applied, £ as
large as possible Is often optimal.

» With correction for multiplicity, there Is usually
a unigue optimum k.
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| Bonferronl Tests

Define
A g Y™

o)

Then, for normally N (0, %) distributed data and
one-sided Bonferroni z-tests:

B(Ne) = qk (1= @, yi(zam))

where q Is the expected proportion of incorrect

null hypotheses.



I Example: Bonferroni z- and t-tests

—— z-test
25 - t-test

E(Ny)

0 10000 20000 30000

Kk

The expected number of correctly rejected null hypotheses
for given k and the parameters m = 100000, q

— 0.01,
o = 0.05, and 8 = o under H;. I



| Optimum Number of Hypotheses

Theorem: Define

Then, as m — oo, the optimum number of
hypotheses to test is

K = k[l + o(1)],

with remainder term being negative.
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| Numerical Example

The optimum number of hypotheses k' and the
power (in %) to reject an individual incorrect null

hypotheses:
A
5 10 20 50 100 1000
0.01 | 3(57) | 8(70) | 25(74) | 124 (76) | 425 (78) | 28908 (82)
a 0.025 | 3(69) | 9(71) | 29(72) | 138(75) | 469 (77) | 30883 (81)
0.05 | 4(60) | 11 (66) | 33(70) | 152 (74) | 508 (76) | 32564 (81)
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| Bonferroni—Holm Tests

E(Ny)

—e— Bonferroni
. Holm

I I I I I I
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Kk

Bonferroni vs. Bonferroni—Holm Tests:

9 =1.m = 200,a = 0.025, and g = 0.5. I



| Control of False Discovery Rate

Benjamini—Hochberg:

”
max (R, 1))

Asymptotically equivalent problem (see
Genovese and Wasserman (2002)):

E(N,) = qk (1 ~ Dy ml)(,zu)) — max,

N

FDR = E(




| Benjamini—Hochberg

Theorem: Asymptotically, the optimum solution Is
AQ

(Zug - Zﬁu;})w

k=

m

where u; maximizes

u

(2u — 2pu)
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I Asymptotic vs. Simulated Objective Function

BH asymptotic
¢ BH simulation

| | | | | |
0 10 20 30 40 50 60

Kk

The parameters: 6 = 1, m = 200, o = 0.025, and

qg = 0.0. I



| t-Tests |

Bonferroni-tests:

EN]gt) - qk[l — FS;ijm/\/E(ta/k,m/k)]a

with F") non-central t-cdf with v — 1 df and

noncentrality parameter o, and ¢, , 1 — v quantile

of standard t-distribution with v — 1 degrees of
freedom.

Benjamini—Hochberg procedure:

NG — gk[1 - F

m/k,Am/\/E(tuvm/k)]° I



| t- Tests ||

Theorem: Let 61 > 0, and define 6,, = 6//m.
Assume that

- O/m p(H)

m
o o

Then, for m — oo, the optimum solution for
t-tests converges to that for z-tests.
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| Possible Rejections for z- and t-Tes

40 —

— z-test
30 4 "7 t—test

E(Ny)

5000 10000 15000 20000

Kk

Parameters: m = 100000, ¢ = 0.01, o = 0.05 and

o) /o = 1. I



| Composite Alternatives |

Bonferroni z-Tests:

ENe=ak [ (1= 8- 252 ) aF®)

where F' conditional c.d.f. of 6 given 6 > 0,
q= P >0),and A,,(0) = 9@.
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| Composite Alternatives |l

Theorem: Assume that F' Is continuous and define

m ds/o?
2log(m d%/o?)’

]fmf .=

where dr maximizes
d2[1 — F(d)].

Assuming that d*(1 — F(d)) — 0 as d — oo,
optimum solution /. satisfies

B p = km,r(1 4 0(1)). I



| Composite Alternatives ll|

—— z-test
25 - t-test

E(Ny)

0 10000 20000 30000

Kk

Parameters: m = 100000, ¢ = 0.01, o = 0.05.

Effect size under alternative N (0, 1.2) distributed. I



| Composite Alternatives IV

Similar result can be obtained for
Benjamini—Hochberg procedure ...



| Classification Procedures |

Classification between 6 = 6, and 6 = 6,
Minimize

k(w1 q |1 — gr(6h)] +wo (1 —q)gr(th)),

with g;.(6) probability of deciding for 6;) under 0.
For fixed k, problem equivalent to maximizing

U(k) = k(w1 qgx(01) —wo (1 —q)gr(o)) -

B



| Classification Procedures I

Theorem: For Bayes-classifier, normal data and

r=wy(1l—q)/(wq):
Ifr > 1, then optimum k satisfies

A\
= ()
Ty

where z, IS the solution of

0=z plr—c(r,z)]/2— Pz —c(r,z)]+1 P[—c(r,z)],

with ¢(r, z) = log(r)/x + x/2, and I
Am — (91 — (90\/%/0'.



| Objective Function U(K)

— U(k)
. - - correct
AN incorrect

3.0

2.0

1.0

0.0

Parameters m = 100, ¢ = 0.5, wg = 3, w; = 1,

and W) /o = 1/2. I



| Summary

#® Given a limited maximum number of observations, the
number of possible rejections depends considerably on
the number of considered hypotheses.

# With a good design involving an appropriate allocation
of the observations to the hypotheses, a lot more can
be gained than by using a more sophisticated multiple
test procedure.

» For more details see: On the Optimum Number of Hypotheses

to Test when the Number of Observations is Limited. (Futschik &

Posch (2005)) I
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