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A Main Goal in Statistics

Extract as much information as possible from
a limited number of observations

In the context of Multiple Hypothesis Testing:
Reject (correctly!) as many null hypotheses
as possible while still ensuring some global
control of the type I error.

Much work has been done to derive multiple test
procedures that achieve this goal!
We address issue from a different as usual point of view ...
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Our Framework

Consider situation where ...

multiple hypotheses are to be tested

there is control at the design stage
concerning how many hypotheses will be
tested

overall number of observations is limited by
some constant m

there is control at the design stage
concerning the allocation of the observations
among the hypotheses to be tested
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Some Applications

Clinical trials with subgroups defined by age,
treatment etc.

Crop variety selection

Microarrays

Discrete event systems
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Our Goal

Given

a maximum overall number of observations,

a certain multiple test procedure

Maximize (in number k of considered
hypotheses):
expected number of correct rejections
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Outline

Framework of optimization problem

Optimization w.r.t. a reference alternative
Optimum number of hypotheses when
controlling the family-wise error
(Bonferroni, Bonferroni–Holm, Dunnett)
Optimum number of hypotheses when
controlling the false discovery rate
(Benjamini–Hochberg)

Optimization w.r.t. a composite alternative

Classification Procedures
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The Optimization Problem

Total of m observations and K potential
hypotheses pairs available.

Focus on hypotheses of type
H0,i : θi = 0 vs. H1,i : θi > 0, (1 ≤ i ≤ K).

If k hypothesis pairs selected at random, m/k
observations available for each hypothesis
pair (up to round off differences).

Choose k to maximize expected number of
correct rejections ENk.

On the Optimum Number of Hypotheses to Test when the Number of Observations is Limited – p. 8/??



General Observations

If no correction for multiplicity applied, k as
large as possible is often optimal.

With correction for multiplicity, there is usually
a unique optimum k.
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Bonferroni Tests

Define

∆m := θ(1)

√
m

σ

Then, for normally N(0, σ2) distributed data and
one-sided Bonferroni z-tests:

E(Nk) = q k
(

1 − Φ(∆m/
√

k,1)(zα/k)
)

where q is the expected proportion of incorrect
null hypotheses.
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Example: Bonferroni z- and t-tests
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The expected number of correctly rejected null hypotheses
for given k and the parameters m = 100000, q = 0.01,
α = 0.05, and θ = σ under H1.
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Optimum Number of Hypotheses

Theorem: Define

km :=
∆2

m

2 log(∆2
m)

.

Then, as m → ∞, the optimum number of
hypotheses to test is

k∗
m = km[1 + o(1)],

with remainder term being negative.
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Numerical Example

The optimum number of hypotheses k∗
m and the

power (in %) to reject an individual incorrect null
hypotheses:

∆m

5 10 20 50 100 1000

0.01 3 (57) 8 (70) 25 (74) 124 (76) 425 (78) 28908 (82)

α 0.025 3 (69) 9 (71) 29 (72) 138 (75) 469 (77) 30883 (81)

0.05 4 (60) 11 (66) 33 (70) 152 (74) 508 (76) 32564 (81)
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Bonferroni–Holm Tests

0 10 20 30 40 50 60

0
2

4
6

8

k

E
(N

k
)

Bonferroni

Holm

Bonferroni vs. Bonferroni–Holm Tests:
θ = 1, m = 200, α = 0.025, and q = 0.5.
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Control of False Discovery Rate

Benjamini–Hochberg:

FDR = E(
V

max(R, 1)
)

Asymptotically equivalent problem (see
Genovese and Wasserman (2002)):

E(Nk) = q k
(

1 − Φ(∆m/
√

k,1)(zu)
)

→ max
k

,
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Benjamini–Hochberg

Theorem: Asymptotically, the optimum solution is

k∗
m =

∆2
m

(zu∗β
− zβu∗β

)2
,

where u∗
β maximizes

u

(zu − zβu)2
.
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Asymptotic vs. Simulated Objective Function
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The parameters: θ = 1, m = 200, α = 0.025, and
q = 0.5.
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t-Tests I

Bonferroni-tests:

EN
(t)
k = q k[1 − F

(t)

m/k,∆m/
√

k
(tα/k,m/k)],

with F
(t)
ν,δ non-central t-cdf with ν − 1 df and

noncentrality parameter δ, and tγ,ν 1 − γ quantile
of standard t-distribution with ν − 1 degrees of
freedom.
Benjamini–Hochberg procedure:

EN
(t)
k = q k[1 − F

(t)

m/k,∆m/
√

k
(tu,m/k)].
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t-Tests II

Theorem: Let θ(1) > 0, and define θm = θ/
√

m.
Assume that

∆m =
θm

√
m

σ
=

θ(1)

σ
.

Then, for m → ∞, the optimum solution for
t-tests converges to that for z-tests.
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Possible Rejections for z- and t-Test
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Parameters: m = 100000, q = 0.01, α = 0.05 and
θ(1)/σ = 1.
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Composite Alternatives I

Bonferroni z-Tests:

ENk = q k

∫ ∞

0

(

1 − Φ(zα/k −
∆m(θ)
√

k
)

)

dF (θ),

where F conditional c.d.f. of θ given θ > 0,
q = P (θ > 0), and ∆m(θ) = θ

√
m
σ .
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Composite Alternatives II

Theorem: Assume that F is continuous and define

km,F :=
m d2

F/σ2

2 log(m d2
F/σ2)

,

where dF maximizes

d2[1 − F (d)].

Assuming that d2(1 − F (d)) → 0 as d → ∞,
optimum solution k∗

m,F satisfies

k∗
m,F = km,F (1 + o(1)).
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Composite Alternatives III
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Parameters: m = 100000, q = 0.01, α = 0.05.
Effect size under alternative N(0, 1.2) distributed.
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Composite Alternatives IV

Similar result can be obtained for
Benjamini–Hochberg procedure ...
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Classification Procedures I

Classification between θ = θ0 and θ = θ1

Minimize

k (w1 q [1 − gk(θ1)] + w0 (1 − q)gk(θ0)) ,

with gk(θ) probability of deciding for θ(1) under θ.

For fixed k, problem equivalent to maximizing

U(k) = k (w1 q gk(θ1) − w0 (1 − q)gk(θ0)) .
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Classification Procedures II

Theorem: For Bayes-classifier, normal data and
r = w0 (1 − q)/(w1 q):
If r > 1, then optimum k satisfies

k =

(

∆m

xr

)2

,

where xr is the solution of

0 = x ϕ[x−c(r, x)]/2−Φ[x−c(r, x)]+r Φ[−c(r, x)],

with c(r, x) = log(r)/x + x/2, and
∆m = θ1 − θ0

√
m/σ.
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Objective Function U(k)
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Parameters m = 100, q = 0.5, w0 = 3, w1 = 1,
and θ(1)/σ = 1/2.
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Summary

Given a limited maximum number of observations, the
number of possible rejections depends considerably on
the number of considered hypotheses.

With a good design involving an appropriate allocation
of the observations to the hypotheses, a lot more can
be gained than by using a more sophisticated multiple
test procedure.

For more details see: On the Optimum Number of Hypotheses

to Test when the Number of Observations is Limited. (Futschik &

Posch (2005))
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