High Dimensional Predictive Inference

Workshop on Current Trends and Challenges in Model Selection and Related Areas

> Vienna, Austria July 2008

Ed George The Wharton School

(joint work with L. Brown, F. Liang, and X. Xu)

- 1. Estimating a Normal Mean: A Brief History
 - Observe $X \mid \mu \sim N_p(\mu, I)$ and estimate μ by $\hat{\mu}$ under

$$R_Q(\mu, \hat{\mu}) = E_\mu \|\hat{\mu}(X) - \mu\|^2$$

- $\hat{\mu}_{MLE}(X) = X$ is the MLE, best invariant and minimax with constant risk
- Shocking Fact: $\hat{\mu}_{MLE}$ is inadmissible when $p \ge 3$. (Stein 1956)
- Bayes rules are a good place to look for improvements
- For a prior $\pi(\mu)$, the Bayes rule $\hat{\mu}_{\pi}(X) = E_{\pi}(\mu \mid X)$ minimizes $E_{\pi}R_Q(\mu, \hat{\mu})$
- Remark: The (formal) Bayes rule under $\pi_U(\mu) \equiv 1$ is

$$\hat{\mu}_U(X) \equiv \hat{\mu}_{MLE}(X) = X$$

• $\hat{\mu}_H(X)$, the Bayes rule under the Harmonic prior

$$\pi_H(\mu) = \|\mu\|^{-(p-2)},$$

dominates $\hat{\mu}_U$ when $p \ge 3$. (Stein 1974)

• $\hat{\mu}_a(X)$, the Bayes rule under $\pi_a(\mu)$ where

$$\mu \mid s \sim N_p(0, s I), \quad s \sim (1+s)^{a-2}$$

dominates $\hat{\mu}_U$ and is proper Bayes when p = 5 and $a \in [.5, 1)$ or when $p \ge 6$ and $a \in [0, 1)$. (Strawderman 1971)

• A Unifying Phenomenon: These domination results can be attributed to properties of the marginal distribution of X under π_H and π_a . • The Bayes rule under $\pi(\mu)$ can be expressed as

$$\hat{\mu}_{\pi}(X) = E_{\pi}(\mu \mid X) = X + \nabla \log m_{\pi}(X)$$

where

$$m_{\pi}(X) \propto \int e^{-(X-\mu)^2/2} \pi(\mu) \, d\mu$$

is the marginal of X under $\pi(\mu)$. $(\nabla = (\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_p})')$ (Brown 1971)

• The risk improvement of $\hat{\mu}_{\pi}(X)$ over $\hat{\mu}_{U}(X)$ can be expressed as

$$R_Q(\mu, \hat{\mu}_U) - R_Q(\mu, \hat{\mu}_\pi) = E_\mu \left[\|\nabla \log m_\pi(X)\|^2 - 2\frac{\nabla^2 m_\pi(X)}{m_\pi(X)} \right]$$
$$= E_\mu \left[-4\nabla^2 \sqrt{m_\pi(X)} / \sqrt{m_\pi(X)} \right]$$
$$(\nabla^2 = \sum_i \frac{\partial^2}{\partial x_i^2}) \text{ (Stein 1974, 1981)}$$

• That $\hat{\mu}_H(X)$ dominates $\hat{\mu}_U$ when $p \ge 3$, follows from the fact that the marginal $m_{\pi}(X)$ under π_H is superharmonic, i.e.

 $\nabla^2 m_\pi(X) \le 0$

• That $\hat{\mu}_a(X)$ dominates $\hat{\mu}_U$ when $p \ge 5$ (and conditions on a), follows from the fact that the sqrt of the marginal under π_a is superharmonic, i.e.

$$\nabla^2 \sqrt{m_\pi(X)} \le 0$$

(Fourdrinier, Strawderman and Wells 1998)

- 2. The Prediction Problem
 - Observe $X \mid \mu \sim N_p(\mu, v_x I)$ and predict $Y \mid \mu \sim N_p(\mu, v_y I)$

– Given μ , Y is independent of X

 $-v_x$ and v_y are known (for now)

- The Problem: To estimate $p(y \mid \mu)$ by $q(y \mid x)$.
- Measure closeness by Kullback-Leibler loss,

$$L(\mu, q(y \mid x)) = \int p(y \mid \mu) \log \frac{p(y \mid \mu)}{q(y \mid x)} dy$$

• Risk function

$$R_{KL}(\mu, q) = \int L(\mu, q(y \mid x)) \ p(x \mid \mu) \ dx = E_{\mu}[L(\mu, q(y \mid X))]$$

- 3. Bayes Rules for the Prediction Problem
 - For a prior $\pi(\mu)$, the Bayes rule

$$p_{\pi}(y \mid x) = \int p(y \mid \mu) \pi(\mu \mid x) d\mu = E_{\pi}[p(y \mid \mu) | X]$$

minimizes
$$\int R_{KL}(\mu, q) \pi(\mu) d\mu$$
 (Aitchison 1975)

- Let $p_U(y \mid x)$ denote the Bayes rule under $\pi_U(\mu) \equiv 1$
- $p_U(y \mid x)$ dominates $p(y \mid \hat{\mu} = x)$, the naive "plug-in" predictive distribution (Aitchison 1975)
- $p_U(y \mid x)$ is best invariant and minimax with constant risk (Murray 1977, Ng 1980, Barron and Liang 2003)
- Shocking Fact: $p_U(y \mid x)$ is inadmissible when $p \ge 3$

• $p_H(y \mid x)$, the Bayes rule under the Harmonic prior

$$\pi_H(\mu) = \|\mu\|^{-(p-2)},$$

dominates $p_U(y \mid x)$ when $p \ge 3$. (Komaki 2001).

• $p_a(y \mid x)$, the Bayes rule under $\pi_a(\mu)$ where

$$\mu \mid s \sim N_p (0, s v_0 I), \quad s \sim (1+s)^{a-2},$$

dominates $p_U(y \mid x)$ and is proper Bayes when $v_x \leq v_0$ and when p = 5 and $a \in [.5, 1)$ or when $p \geq 6$ and $a \in [0, 1)$. (Liang 2002)

• Main Question: Are these domination results attributable to the properties of m_{π} ?

- 4. A Key Representation for $p_{\pi}(y \mid x)$
 - Let $m_{\pi}(x; v_x)$ denote the marginal of $X \mid \mu \sim N_p(\mu, v_x I)$ under $\pi(\mu)$.
 - Lemma: The Bayes rule $p_{\pi}(y \mid x)$ can be expressed as

$$p_{\pi}(y \mid x) = \frac{m_{\pi}(w; v_w)}{m_{\pi}(x; v_x)} \ p_U(y \mid x)$$

where

$$W = \frac{v_y X + v_x Y}{v_x + v_y} \sim N_p(\mu, v_w I)$$

• Using this, the risk improvement can be expressed as

$$R_{KL}(\mu, p_U) - R_{KL}(\mu, p_\pi) = \int \int p_{v_x}(x|\mu) p_{v_y}(y|\mu) \log \frac{p_\pi(y|x)}{p_U(y|x)} dx dy$$
$$= E_{\mu, v_w} \log m_\pi(W; v_w) - E_{\mu, v_x} \log m_\pi(X; v_x)$$

- 5. An Analogue of Stein's Unbiased Estimate of Risk
 - Theorem:

$$\frac{\partial}{\partial v} E_{\mu,v} \log m_{\pi}(Z;v) = E_{\mu,v} \left[\frac{\nabla^2 m_{\pi}(Z;v)}{m_{\pi}(Z;v)} - \frac{1}{2} \|\nabla \log m_{\pi}(Z;v)\|^2 \right]$$
$$= E_{\mu,v} \left[2\nabla^2 \sqrt{m_{\pi}(Z;v)} / \sqrt{m_{\pi}(Z;v)} \right]$$

• Proof relies on using the heat equation

$$\frac{\partial}{\partial v}m_{\pi}(z;v) = \frac{1}{2}\nabla^2 m_{\pi}(z;v),$$

Brown's representation and Stein's Lemma.

- 6. General Conditions for Minimax Prediction
 - Let $m_{\pi}(z; v)$ be the marginal distribution of $Z \mid \mu \sim N_p(\mu, vI)$ under $\pi(\mu)$.
 - **Theorem:** If $m_{\pi}(z; v)$ is finite for all z, then $p_{\pi}(y \mid x)$ will be minimax if either of the following hold:

(i) $\sqrt{m_{\pi}(z;v)}$ is superharmonic (ii) $m_{\pi}(z;v)$ is superharmonic

- Corollary: If $m_{\pi}(z; v)$ is finite for all z, then $p_{\pi}(y \mid x)$ will be minimax if $\pi(\mu)$ is superharmonic
- $p_{\pi}(y \mid x)$ will dominate $p_U(y \mid x)$ in the above results if the superharmonicity is strict on some interval.

- 7. An Explicit Connection Between the Two Problems
 - Comparing Stein's unbiased quadratic risk expression with our unbiased KL risk expression reveals

$$R_Q(\mu, \hat{\mu}_U) - R_Q(\mu, \hat{\mu}_\pi) = -2 \left[\frac{\partial}{\partial v} E_{\mu, v} \log m_\pi(Z; v) \right]_{v=1}$$

• Combined with our previous KL risk difference expression reveals a fascinating connection

$$R_{KL}(\mu, p_U) - R_{KL}(\mu, p_\pi) = \frac{1}{2} \int_{v_w}^{v_x} \frac{1}{v^2} \left[R_Q(\mu, \hat{\mu}_U) - R_Q(\mu, \hat{\mu}_\pi) \right]_v dv$$

• Ultimately it is this connection that yields the similar conditions for minimaxity and domination in both problems. Can we go further?

- 8. Sufficient Conditions for Admissibility
 - Let $B_{KL}(\pi, q) \equiv E_{\pi}[R_{KL}(\mu, q)]$ be the average KL risk of $q(y \mid x)$ under π .
 - **Theorem** (Blyth's Method): If there is a sequence of finite nonnegative measures satisfying $\pi_n(\{\mu : \|\mu\| \le 1\}) \ge 1$ such that

$$B_{KL}(\pi_n, q) - B_{KL}(\pi_n, p_{\pi_n}) \to 0$$

then q is admissible.

• **Theorem:** For any two Bayes rules p_{π} and p_{π_n}

$$B_{KL}(\pi_n, p_\pi) - B_{KL}(\pi_n, p_{\pi_n}) = \frac{1}{2} \int_{v_w}^{v_x} \frac{1}{v^2} \left[B_Q(\pi_n, \hat{\mu}_\pi) - B_Q(\pi_n, \hat{\mu}_{\pi_n}) \right]_v dv$$

where $B_Q(\pi, \hat{\mu})$ is the average quadratic risk of $\hat{\mu}$ under π .

• Using the explicit construction of $\pi_n(\mu)$ from Brown and Hwang (1984), we obtain tail behavior conditions that prove admissibility of $p_U(y | x)$ when $p \leq 2$, and admissibility of $p_H(y | x)$ when $p \geq 3$.

- 9. A Complete Class Theorem
 - **Theorem**: In the KL risk problem, all the admissible procedures are Bayes or formal Bayes procedures.
 - Our proof uses the weak^{*} topology from L[∞] to L¹ to define convergence on the action space which is the set of all proper densities on R^p.
 - A Sletch of the Proof:
 - (i) All the admissible procedures are non-randomized.
 - (ii) For any admissible procedure $p(\cdot | x)$, there exists a sequence of priors $\pi_i(\mu)$ such that $p_{\pi_i}(\cdot | x) \to p(\cdot | x)$ weak* for a.e. x.
 - (iii) We can find a subsequence $\{\pi_{i''}\}$ and a limit prior π such that $p_{\pi_{i''}}(\cdot | x) \to p_{\pi}(\cdot | x)$ weak^{*} for almost every x. Therefore, $p(\cdot | x) = p_{\pi}(\cdot | x)$ for a.e. x, i.e. $p(\cdot | x)$ is a Bayes or a formal Bayes rule.

10. Predictive Estimation for Linear Regression

• Observe $X_{m \times 1} = A_{m \times p} \beta_{p \times 1} + \varepsilon_{m \times 1}$ and predict $Y_{n \times 1} = B_{n \times p} \beta_{p \times 1} + \tau_{n \times 1}$

$$-\varepsilon \sim N_m(0, I_m) \text{ is independent of } \tau \sim N_n(0, I_n)$$
$$-rank(A'A) = p$$

• Given a prior π on β , the Bayes procedure $p_{\pi}^{L}(y \mid x)$ is

$$p_{\pi}^{L}(y \mid x) = \frac{\int p(x \mid A\beta)p(y \mid B\beta)\pi(\beta)d\beta}{\int p(x \mid A\beta)\pi(\beta)d\beta}$$

• The Bayes procedure $p_U^L(y \mid x)$ under the uniform prior $\pi_U \equiv 1$ is minimax with constant risk

11. The Key Marginal Representation

• For any prior π ,

$$p_{\pi}^{L}(y \mid x) = \frac{m_{\pi}(\hat{\beta}_{x,y}, (C'C)^{-1})}{m_{\pi}(\hat{\beta}_{x}, (A'A)^{-1})} p_{U}^{L}(y \mid x)$$

where $C_{(m+n) \times p} = (A', B')'$ and

$$\hat{\beta}_x = (A'A)^{-1}A'x \sim N_p(\beta, (A'A)^{-1})$$
$$\hat{\beta}_{x,y} = (C'C)^{-1}C'(x', y')' \sim N_p(\beta, (C'C)^{-1})$$

- **12. Risk Improvement over** $p_U^L(y \mid x)$
 - Here the difference between the KL risks of $p_U^L(y \mid x)$ and $p_\pi^L(y \mid x)$ can be expressed as

$$R_{KL}(\beta, p_U^L) - R_{KL}(\beta, p_\pi^L) =$$

$$E_{\beta, (C'C)^{-1}} \log m_\pi(\hat{\beta}_{x,y}; (C'C)^{-1}) - E_{\beta, (A'A)^{-1}} \log m_\pi(\hat{\beta}_x; (A'A)^{-1})$$

• Minimaxity of $p_{\pi}^{L}(y \mid x)$ is here obtained when

$$\frac{\partial}{\partial \omega} E_{\mu, V_{\omega}} \log m_{\pi}(Z; V_{\omega}) < 0$$

where

$$V_{\omega} \equiv \omega (A'A)^{-1} + (1-\omega)(C'C)^{-1}$$

• This leads to weighted superharmonic conditions on m_{π} and π for minimaxity.

13. Minimax Shrinkage Towards 0

• Our Lemma representation

$$p_H(y \mid x) = \frac{m_H(w; v_w)}{m_H(x; v_x)} \ p_U(y \mid x)$$

shows how $p_H(y \mid x)$ "shrinks $p_U(y \mid x)$ towards 0" by an adaptive multiplicative factor

• The following figure illustrates how this shrinkage occurs for various values of x.

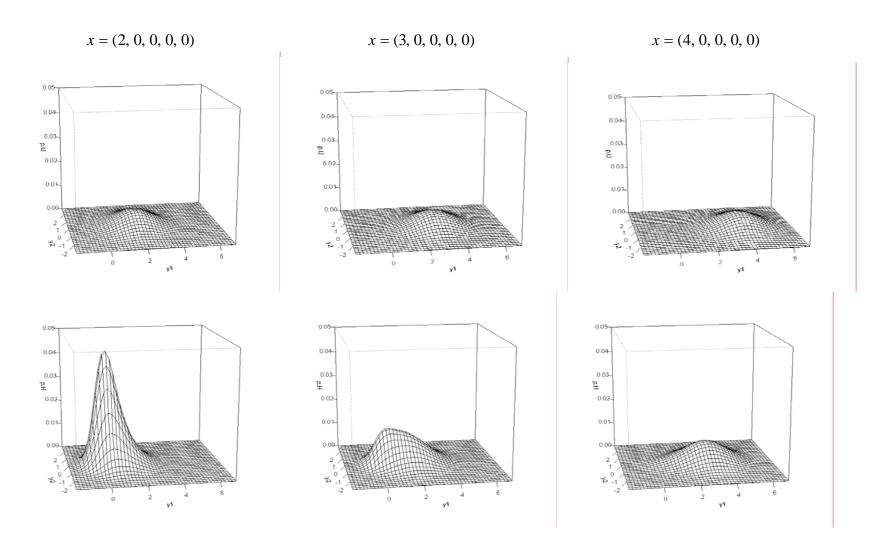


FIG 2. Shrinkage of $p_{U}(y|x)$ to obtain $p_{H}(y|x)$ when $v_{x} = 1$, $v_{y} = 0.2$ and p = 5. Here $y = (y_{1}, y_{2}, 0, 0, 0)$.

• Because π_H and $\sqrt{m_a}$ are superharmonic under suitable conditions, the result that $p_H(y \mid x)$ and $p_a(y \mid x)$ dominate $p_U(y \mid x)$ and are minimax follows immediately from our results.

• It also follows that any of the improper superharmonic t-priors of Faith (1978) or any of the proper generalized t-priors of Fourdrinier, Strawderman and Wells (1998) yield Bayes rules that dominate $p_U(y \mid x)$ and are minimax.

• The following figures illustrate how the risk functions $R_{KL}(\mu, p_H)$ and $R_{KL}(\mu, p_a)$ take on their minima at $\mu = 0$, and then asymptote to $R_{KL}(\mu, p_U)$ as $\|\mu\| \to \infty$.

Figure 1a. The risk difference between q_U and q_H : $R(\mu, q_U) - R(\mu, q_H)$. Here $\theta = (c, \dots, c)$, $v_x = 1$, $v_y = 0.2$

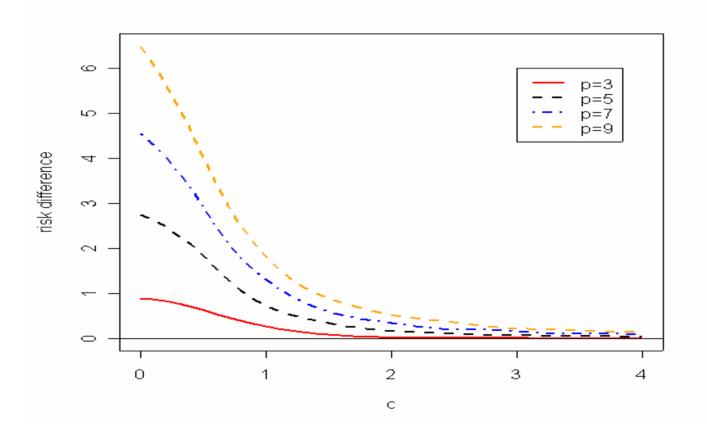
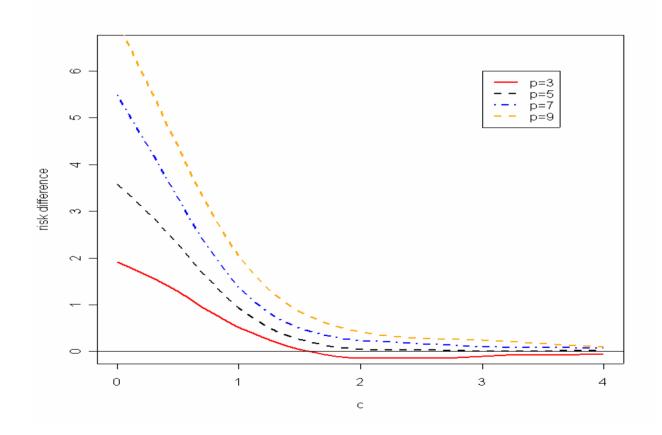


Figure 1b. The risk difference between q_U and q_a with a = 0.5: $R(\mu, q_U) - R(\mu, q_a)$. Here $\theta = (c, \dots, c)$, $v_x = 1$, $v_y = 0.2$



14. Shrinkage Towards Points or Subspaces

- We can trivially modify the previous priors and predictive distributions to shrink towards an arbitrary point $b \in \mathbb{R}^p$.
- Consider the recentered prior

$$\pi^b(\mu) = \pi(\mu - b)$$

and corresponding recentered marginal

$$m_{\pi}^{b}(z;v) = m_{\pi}(z-b;v).$$

• This yields a predictive distribution

$$p_{\pi}^{b}(y \mid x) = \frac{m_{\pi}^{b}(w; v_{w})}{m_{\pi}^{b}(x; v_{x})} p_{U}(y \mid x)$$

that now shrinks $p_U(y \mid x)$ towards b rather than 0.

- More generally, we can shrink $p_U(y \mid x)$ towards any subspace B of R^p whenever π , and hence m_{π} , is spherically symmetric.
- Letting $P_B z$ be the projection of z onto B, shrinkage towards B is obtained by using the recentered prior

$$\pi^B(\mu) = \pi(\mu - P_B\mu)$$

which yields the recentered marginal

$$m_{\pi}^{B}(z;v) := m_{\pi}(z - P_{B}z;v).$$

• This modification yields a predictive distribution

$$p_{\pi}^{B}(y \mid x) = \frac{m_{\pi}^{B}(w; v_{w})}{m_{\pi}^{B}(x; v_{x})} p_{U}(y \mid x)$$

that now shrinks $p_U(y \mid x)$ towards B.

• If $m_{\pi}^{B}(z; v)$ satisfies any of our superharmonic conditions for minimaxity, then $p_{\pi}^{B}(y \mid x)$ will dominate $p_{U}(y \mid x)$ and be minimax.

15. Minimax Multiple Shrinkage Prediction

• For any spherically symmetric prior, a set of subspaces B_1, \ldots, B_N , and corresponding probabilities w_1, \ldots, w_N , consider the recentered mixture prior

$$\pi_*(\mu) = \sum_{i=1}^N w_i \, \pi^{B_i}(\mu),$$

and corresponding recentered mixture marginal

$$m_*(z;v) = \sum_{1}^{N} w_i m_{\pi}^{B_i}(z;v).$$

• Applying the $\hat{\mu}_{\pi}(X) = X + \nabla \log m_{\pi}(X)$ construction with $m_{*}(X; v)$ yields minimax multiple shrinkage estimators of μ . (George 1986)

• Applying the predictive construction with $m_*(z; v)$ yields

$$p_*(y \mid x) = \sum_{i=1}^N p(B_i \mid x) \, p_{\pi}^{B_i}(y \mid x)$$

where $p_{\pi}^{B_i}(y \mid x)$ is a single target predictive distribution and

$$p(B_i \mid x) = \frac{w_i m_{\pi}^{B_i}(x; v_x)}{\sum_{i=1}^N w_i m_{\pi}^{B_i}(x; v_x)}$$

is the posterior weight on the ith prior component.

- **Theorem:** If each $m_{\pi}^{B_i}(z; v)$ is superharmonic, then $p_*(y | x)$ will dominate $p_U(y | x)$ and will be minimax.
- The following final figure illustrates how the risk reduction obtained by the multiple shrinkage predictor p_{H^*} which adaptively shrinks $p_U(y|x)$ towards the closer of the two points $b_1 = (2, \ldots, 2)$ and $b_2 = (-2, \ldots, -2)$ using equal weights $w_1 = w_2 = 0.5$

Figure 3. The risk difference between p_U and multiple shrinkage p_{H^*} : $R(\mu, p_U) - R(\mu, p_{H^*})$. Here $\theta = (c, \dots, c)$, $v_x = 1$, $v_y = 0.2$, $a_1 = 2$, $a_2 = -2$, $w_1 = w_2 = 0.5$.

