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1. Estimating a Normal Mean: A Brief History

• Observe X | µ ∼ Np(µ, I) and estimate µ by µ̂ under

RQ(µ, µ̂) = Eµ‖µ̂(X)− µ‖2

• µ̂MLE(X) = X is the MLE, best invariant and minimax with
constant risk

• Shocking Fact: µ̂MLE is inadmissible when p ≥ 3. (Stein 1956)

• Bayes rules are a good place to look for improvements

• For a prior π(µ), the Bayes rule µ̂π(X) = Eπ(µ | X) minimizes
EπRQ(µ, µ̂)

• Remark: The (formal) Bayes rule under πU (µ) ≡ 1 is

µ̂U (X) ≡ µ̂MLE(X) = X



• µ̂H(X), the Bayes rule under the Harmonic prior

πH(µ) = ‖µ‖−(p−2),

dominates µ̂U when p ≥ 3. (Stein 1974)

• µ̂a(X), the Bayes rule under πa(µ) where

µ | s ∼ Np (0, s I) , s ∼ (1 + s)a−2

dominates µ̂U and is proper Bayes when p = 5 and a ∈ [.5, 1) or
when p ≥ 6 and a ∈ [0, 1). (Strawderman 1971)

• A Unifying Phenomenon: These domination results can be at-
tributed to properties of the marginal distribution of X under πH

and πa.



• The Bayes rule under π(µ) can be expressed as

µ̂π(X) = Eπ(µ |X) = X +∇ log mπ(X)

where
mπ(X) ∝

∫
e−(X−µ)2/2 π(µ) dµ

is the marginal of X under π(µ). (∇ = ( ∂
∂x1

, . . . , ∂
∂xp

)′)
(Brown 1971)

• The risk improvement of µ̂π(X) over µ̂U (X) can be expressed as

RQ(µ, µ̂U )−RQ(µ, µ̂π) = Eµ

[
‖∇ log mπ(X)‖2 − 2

∇2mπ(X)
mπ(X)

]

= Eµ

[
−4∇2

√
mπ(X)/

√
mπ(X)

]

(∇2 =
∑

i
∂2

∂x2
i

) (Stein 1974, 1981)



• That µ̂H(X) dominates µ̂U when p ≥ 3, follows from the fact that
the marginal mπ(X) under πH is superharmonic, i.e.

∇2mπ(X) ≤ 0

• That µ̂a(X) dominates µ̂U when p ≥ 5 (and conditions on a),
follows from the fact that the sqrt of the marginal under πa is
superharmonic, i.e.

∇2
√

mπ(X) ≤ 0

(Fourdrinier, Strawderman and Wells 1998)



2. The Prediction Problem

• Observe X | µ ∼ Np(µ, vxI) and predict Y | µ ∼ Np(µ, vyI)

– Given µ, Y is independent of X

– vx and vy are known (for now)

• The Problem: To estimate p(y | µ) by q(y | x).

• Measure closeness by Kullback-Leibler loss,

L(µ, q(y | x)) =
∫

p(y | µ) log
p(y | µ)
q(y | x)

dy

• Risk function

RKL(µ, q) =
∫

L(µ, q(y | x)) p(x | µ) dx = Eµ[L(µ, q(y |X)]



3. Bayes Rules for the Prediction Problem

• For a prior π(µ), the Bayes rule

pπ(y | x) =
∫

p(y | µ)π(µ | x)dµ = Eπ[p(y | µ)|X]

minimizes
∫

RKL(µ, q)π(µ)dµ (Aitchison 1975)

• Let pU (y | x) denote the Bayes rule under πU (µ) ≡ 1

• pU (y | x) dominates p(y | µ̂ = x), the naive “plug-in” predictive
distribution (Aitchison 1975)

• pU (y | x) is best invariant and minimax with constant risk
(Murray 1977, Ng 1980, Barron and Liang 2003)

• Shocking Fact: pU (y | x) is inadmissible when p ≥ 3



• pH(y | x), the Bayes rule under the Harmonic prior

πH(µ) = ‖µ‖−(p−2),

dominates pU (y | x) when p ≥ 3. (Komaki 2001).

• pa(y | x), the Bayes rule under πa(µ) where

µ | s ∼ Np (0, s v0I) , s ∼ (1 + s)a−2,

dominates pU (y | x) and is proper Bayes when vx ≤ v0 and when
p = 5 and a ∈ [.5, 1) or when p ≥ 6 and a ∈ [0, 1). (Liang 2002)

• Main Question: Are these domination results attributable to the
properties of mπ?



4. A Key Representation for pπ(y | x)

• Let mπ(x; vx) denote the marginal of X | µ ∼ Np(µ, vxI) under
π(µ).

• Lemma: The Bayes rule pπ(y | x) can be expressed as

pπ(y | x) =
mπ(w; vw)
mπ(x; vx)

pU (y | x)

where
W =

vyX + vxY

vx + vy
∼ Np(µ, vwI)

• Using this, the risk improvement can be expressed as

RKL(µ, pU )−RKL(µ, pπ) =
∫ ∫

pvx(x|µ) pvy (y|µ) log
pπ(y | x)
pU (y | x)

dxdy

= Eµ,vw
log mπ(W ; vw)−Eµ,vx

log mπ(X; vx)



5. An Analogue of Stein’s Unbiased Estimate of Risk

• Theorem:

∂

∂v
Eµ,v log mπ(Z; v) = Eµ,v

[∇2mπ(Z; v)
mπ(Z; v)

− 1
2
‖∇ log mπ(Z; v)‖2

]

= Eµ,v

[
2∇2

√
mπ(Z; v)/

√
mπ(Z; v)

]

• Proof relies on using the heat equation

∂

∂v
mπ(z; v) =

1
2
∇2mπ(z; v),

Brown’s representation and Stein’s Lemma.



6. General Conditions for Minimax Prediction

• Let mπ(z; v) be the marginal distribution of Z | µ ∼ Np(µ, vI)
under π(µ).

• Theorem: If mπ(z; v) is finite for all z, then pπ(y | x) will be
minimax if either of the following hold:

(i)
√

mπ(z; v) is superharmonic

(ii) mπ(z; v) is superharmonic

• Corollary: If mπ(z; v) is finite for all z, then pπ(y | x) will be
minimax if π(µ) is superharmonic

• pπ(y | x) will dominate pU (y | x) in the above results if the super-
harmonicity is strict on some interval.



7. An Explicit Connection Between the Two Problems

• Comparing Stein’s unbiased quadratic risk expression with our
unbiased KL risk expression reveals

RQ(µ, µ̂U )−RQ(µ, µ̂π) = −2
[

∂

∂v
Eµ,v log mπ(Z; v)

]

v=1

• Combined with our previous KL risk difference expression reveals
a fascinating connection

RKL(µ, pU )−RKL(µ, pπ) =
1
2

∫ vx

vw

1
v2

[RQ(µ, µ̂U )−RQ(µ, µ̂π)]v dv

• Ultimately it is this connection that yields the similar conditions
for minimaxity and domination in both problems. Can we go
further?



8. Sufficient Conditions for Admissibility

• Let BKL(π, q) ≡ Eπ[RKL(µ, q)] be the average KL risk of q(y | x)
under π.

• Theorem (Blyth’s Method): If there is a sequence of finite non-
negative measures satisfying πn({µ : ‖µ‖ ≤ 1}) ≥ 1 such that

BKL(πn, q)−BKL(πn, pπn) → 0

then q is admissible.

• Theorem: For any two Bayes rules pπ and pπn

BKL(πn, pπ)−BKL(πn, pπn) =
1
2

∫ vx

vw

1
v2

[BQ(πn, µ̂π)−BQ(πn, µ̂πn)]v dv

where BQ(π, µ̂) is the average quadratic risk of µ̂ under π.

• Using the explicit construction of πn(µ) from Brown and Hwang
(1984), we obtain tail behavior conditions that prove admissibility
of pU (y |x) when p ≤ 2, and admissibility of pH(y |x) when p ≥ 3.



9. A Complete Class Theorem

• Theorem: In the KL risk problem, all the admissible procedures
are Bayes or formal Bayes procedures.

• Our proof uses the weak* topology from L∞ to L1 to define con-
vergence on the action space which is the set of all proper densities
on Rp.

• A Sletch of the Proof:

(i) All the admissible procedures are non-randomized.

(ii) For any admissible procedure p(· |x), there exists a sequence
of priors πi(µ) such that pπi(· |x) → p(· |x) weak* for a.e. x.

(iii) We can find a subsequence {πi′′} and a limit prior π such
that pπi′′ (· | x) → pπ(· | x) weak∗ for almost every x. There-
fore, p(· | x) = pπ(· | x) for a.e. x, i.e. p(· | x) is a Bayes or a
formal Bayes rule.



10. Predictive Estimation for Linear Regression

• Observe Xm×1 = Am×p βp×1 + εm×1

and predict Yn×1 = Bn×p βp×1 + τn×1

– ε ∼ Nm(0, Im) is independent of τ ∼ Nn(0, In)

– rank(A′A) = p

• Given a prior π on β, the Bayes procedure pL
π (y | x) is

pL
π (y | x) =

∫
p(x |Aβ)p(y |Bβ)π(β)dβ∫

p(x |Aβ)π(β)dβ

• The Bayes procedure pL
U (y | x) under the uniform prior πU ≡ 1 is

minimax with constant risk



11. The Key Marginal Representation

• For any prior π,

pL
π (y | x) =

mπ(β̂x,y, (C ′C)−1)

mπ(β̂x, (A′A)−1)
pL

U (y | x)

where C(m+n)×p = (A′, B′)′ and

β̂x = (A′A)−1A′x ∼ Np(β, (A′A)−1)

β̂x,y = (C ′C)−1C ′(x′, y′)′ ∼ Np(β, (C ′C)−1)



12. Risk Improvement over pL
U (y | x)

• Here the difference between the KL risks of pL
U (y |x) and pL

π (y |x)
can be expressed as

RKL(β, pL
U )−RKL(β, pL

π ) =

Eβ,(C′C)−1 log mπ(β̂x,y; (C ′C)−1) − Eβ,(A′A)−1 log mπ(β̂x; (A′A)−1)

• Minimaxity of pL
π (y | x) is here obtained when

∂

∂ω
Eµ,Vω log mπ(Z; Vω) < 0

where
Vω ≡ ω(A′A)−1 + (1− ω)(C ′C)−1

• This leads to weighted superharmonic conditions on mπ and π for
minimaxity.



13. Minimax Shrinkage Towards 0

• Our Lemma representation

pH(y | x) =
mH(w; vw)
mH(x; vx)

pU (y | x)

shows how pH(y | x) “shrinks pU (y | x) towards 0” by an adaptive
multiplicative factor

• The following figure illustrates how this shrinkage occurs for var-
ious values of x.
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• Because πH and
√

ma are superharmonic under suitable condi-
tions, the result that pH(y | x) and pa(y | x) dominate pU (y | x)
and are minimax follows immediately from our results.

• It also follows that any of the improper superharmonic t-priors of
Faith (1978) or any of the proper generalized t-priors of Four-
drinier, Strawderman and Wells (1998) yield Bayes rules that
dominate pU (y | x) and are minimax.

• The following figures illustrate how the risk functions RKL(µ, pH)
and RKL(µ, pa) take on their minima at µ = 0, and then asymp-
tote to RKL(µ, pU ) as ‖µ‖ → ∞.



 
Figure 1a. The risk difference between Uq  and Hq : ),(),( HU qRqR µµ − .  

Here ),,( cc L=θ , 1=xv , 2.0=yv  
 
 

 



 
Figure 1b. The risk difference between Uq  and aq  with 5.0=a : ),(),( aU qRqR µµ − .  

Here ),,( cc L=θ , 1=xv , 2.0=yv  
 
 

 



14. Shrinkage Towards Points or Subspaces

• We can trivially modify the previous priors and predictive distri-
butions to shrink towards an arbitrary point b ∈ Rp.

• Consider the recentered prior

πb(µ) = π(µ− b)

and corresponding recentered marginal

mb
π(z; v) = mπ(z − b; v).

• This yields a predictive distribution

pb
π(y | x) =

mb
π(w; vw)

mb
π(x; vx)

pU (y | x)

that now shrinks pU (y | x) towards b rather than 0.



• More generally, we can shrink pU (y | x) towards any subspace B
of Rp whenever π, and hence mπ, is spherically symmetric.

• Letting PBz be the projection of z onto B, shrinkage towards B
is obtained by using the recentered prior

πB(µ) = π(µ− PBµ)

which yields the reecentered marginal

mB
π (z; v) := mπ(z − PBz; v).

• This modification yields a predictive distribution

pB
π (y | x) =

mB
π (w; vw)

mB
π (x; vx)

pU (y | x)

that now shrinks pU (y | x) towards B.

• If mB
π (z; v) satisfies any of our superharmonic conditions for min-

imaxity, then pB
π (y | x) will dominate pU (y | x) and be minimax.



15. Minimax Multiple Shrinkage Prediction

• For any spherically symmetric prior, a set of subspaces B1, . . . , BN ,
and corresponding probabilities w1, ..., wN , consider the recen-
tered mixture prior

π∗(µ) =
N∑

i=1

wi πBi(µ),

and corresponding recentered mixture marginal

m∗(z; v) =
N∑
1

wi mBi
π (z; v).

• Applying the µ̂π(X) = X+∇ log mπ(X) construction with m∗(X; v)
yields minimax multiple shrinkage estimators of µ. (George 1986)



• Applying the predictive construction with m∗(z; v) yields

p∗(y | x) =
N∑

i=1

p(Bi | x) pBi
π (y | x)

where pBi
π (y | x) is a single target predictive distribution and

p(Bi | x) =
wim

Bi
π (x; vx)∑N

i=1 wim
Bi
π (x; vx)

is the posterior weight on the ith prior component.

• Theorem: If each mBi
π (z; v) is superharmonic, then p∗(y | x) will

dominate pU (y | x) and will be minimax.

• The following final figure illustrates how the risk reduction ob-
tained by the multiple shrinkage predictor pH∗ which adaptively
shrinks pU (y|x) towards the closer of the two points b1 = (2, . . . , 2)
and b2 = (−2, . . . ,−2) using equal weights w1 = w2 = 0.5



 
Figure 3. The risk difference between Up  and multiple shrinkage *H

p : ),(),( *HU pRpR µµ − .  
Here ),,( cc L=θ , 1=xv , 2.0=yv , ,21 =a  22 −=a , 5.021 == ww . 

 




