Statistical Inference in Gaussian Graphical Models

Y. Baraud $^{(1)}$, C. $\operatorname{Giraud}^{(1,2)}$, S. Huet ${ }^{(2)}$, N. Verzelen ${ }^{(3)}$

(1) Université de Nice, (2) INRA Jouy-en-Josas, (3) Université Paris Sud

Vienna 2008.

Université

Gene - gene regulation network of E. coli

med
 Protein - protein network of S. cerevisiae

1458 proteins (vertices) and their 1948 known interactions (edges)

Inferring gene regulation networks

Data: massive transcriptomic data sets produced by microarrays.

- Differential analysis of data obtained in different conditions: with or without deletion of a gene, with or without stress, etc.
- Analysis of the conditional dependences in the data (exploits the whole data set).

A few statistical tools

Descriptive tools:

- Kernel methods (supervised learning)

Model based tools:

- Bayesian Networks
- Gaussian Graphical Models

Gaussian Graphical Models

Gaussian Graphical Models

Statistical model: The transcription levels $\left(X^{(1)}, \ldots, X^{(p)}\right)$ of the p genes are modeled by a Gaussian law in \mathbb{R}^{p}.

Graph of the conditional dependences: graph \mathbf{g} with | an edge $i \stackrel{\mathrm{~g}}{\sim} j$ between the genes i and j |
| :---: |
| $X^{(i)}$ and $X^{(j)}$ are not independent given $\left\{X^{(k)}, k \neq i, j\right\}$ |

regulation network \longleftrightarrow graph \mathbf{g}

Goal: estimate \mathbf{g} from a sample X_{1}, \ldots, X_{n}.

Main difficulty: $n \ll p$

- $p \approx$ a few 100 to a few 1000 genes
- $n \approx$ a few tens

New algorithms: based on thresholding or regularization
\longrightarrow many of them have quite disappointing numerical performances (Villers et al. 2008)
\longrightarrow no theoretical results or in an asymptotic framework (with strong hypotheses on the covariance)

Estimation by model selection

Partial correlations

Hypothesis: $\left(X^{(1)}, \ldots, X^{(p)}\right) \sim \mathcal{N}(0, C)$ in \mathbb{R}^{p}, with $C \succ 0$. Notation: We write $\theta=\left(\theta_{k}^{(j)}\right)$ for the $p \times p$ matrix such that $\theta_{j}^{(j)}=0$ and $\mathbb{E}\left(X^{(j)} \mid X^{(k)}, k \neq j\right)=\sum_{k \neq j} \theta_{k}^{(j)} X^{(k)}$. Skeleton of θ : we have $\theta_{i}^{(j)}=\frac{\operatorname{Cov}\left(X^{(i)}, X^{(j)} \mid X^{(k)}, k \neq i, j\right)}{\operatorname{Var}\left(X^{(j)} \mid X^{(k)}, k \neq j\right)}$ so

Goal: Estimate θ from a sample X_{1}, \ldots, X_{n} with quality criterion $\left.\operatorname{MsEP}(\hat{\theta})=\mathbb{E}\left[\left\|C^{1 / 2}(\hat{\theta}-\theta)\right\|_{p \times p}^{2}\right]=\mathbb{E}^{[}\left\|X_{\text {new }}^{T}(\hat{\theta}-\theta)\right\|_{1 \times p}^{2}\right]$

Partial correlations

Hypothesis: $\left(X^{(1)}, \ldots, X^{(p)}\right) \sim \mathcal{N}(0, C)$ in \mathbb{R}^{p}, with $C \succ 0$.
Notation: We write $\theta=\left(\theta_{k}^{(j)}\right)$ for the $p \times p$ matrix such that $\theta_{j}^{(j)}=0$ and $\mathbb{E}\left(X^{(j)} \mid X^{(k)}, k \neq j\right)=\sum_{k \neq j} \theta_{k}^{(j)} X^{(k)}$.

Skeleton of θ : we have $\theta_{i}^{(j)}=\frac{\operatorname{Cov}\left(X^{(i)}, X^{(j)} \mid X^{(k)}, k \neq i, j\right)}{\operatorname{Var}\left(X^{(i)} \mid X^{(k)}, k \neq j\right)}$ so

Goal: Estimate θ from a sample X_{1}, \ldots, X_{n} with quality criterion $\operatorname{MSEP}(\hat{\theta})=\mathbb{E}^{[\|}\left[\left\|C^{1 / 2}(\hat{\theta}-\theta)\right\|_{p \times p}^{2}\right]=\mathbb{E}\left[\left\|X_{\text {new }}^{T}(\hat{\theta}-\theta)\right\|_{1 \times p}^{2}\right]$

Partial correlations

Hypothesis: $\left(X^{(1)}, \ldots, X^{(p)}\right) \sim \mathcal{N}(0, C)$ in \mathbb{R}^{p}, with $C \succ 0$.
Notation: We write $\theta=\left(\theta_{k}^{(j)}\right)$ for the $p \times p$ matrix such that $\theta_{j}^{(j)}=0$ and $\mathbb{E}\left(X^{(j)} \mid X^{(k)}, k \neq j\right)=\sum_{k \neq j} \theta_{k}^{(j)} X^{(k)}$.

Skeleton of θ : we have $\theta_{i}^{(j)}=\frac{\left.\operatorname{Cov}\left(X^{(i)}, X^{(j)}\right) X^{(k)}, k \neq i, j\right)}{\operatorname{Var}\left(X^{(j)} \mid X^{(k)}, k \neq j\right)}$ so

$$
\theta_{i}^{(j)} \neq 0 \Longleftrightarrow i \stackrel{\mathfrak{g}}{j}^{j}
$$

Goal: Estimate θ from a sample X_{1}, \ldots, X_{n} with quality criterion $\operatorname{NSEP}(\hat{\theta})=\mathbb{E}^{\lceil }\left[\left\|C^{1 / 2}(\hat{\theta}-\theta)\right\|_{p \times p}^{2}\right]=\mathbb{E}^{\lceil }\left[\left\|X_{\text {new }}^{T}(\hat{\theta}-\theta)\right\|_{1 \times p}^{2}\right]$

Partial correlations

Hypothesis: $\left(X^{(1)}, \ldots, X^{(p)}\right) \sim \mathcal{N}(0, C)$ in \mathbb{R}^{p}, with $C \succ 0$.
Notation: We write $\theta=\left(\theta_{k}^{(j)}\right)$ for the $p \times p$ matrix such that $\theta_{j}^{(j)}=0$ and $\mathbb{E}\left(X^{(j)} \mid X^{(k)}, k \neq j\right)=\sum_{k \neq j} \theta_{k}^{(j)} X^{(k)}$.

Skeleton of θ : we have $\theta_{i}^{(j)}=\frac{\operatorname{Cov}\left(X^{(i)}, X^{(j)} \mid X^{(k)}, k \neq i, j\right)}{\operatorname{Var}\left(X^{(j)} \mid X^{(k)}, k \neq j\right)}$ so

$$
\theta_{i}^{(j)} \neq 0 \Longleftrightarrow i \stackrel{\mathrm{~g}}{\sim} j
$$

Goal: Estimate θ from a sample X_{1}, \ldots, X_{n} with quality criterion $\operatorname{MSEP}(\hat{\theta})=\mathbb{E}\left[\left\|C^{1 / 2}(\hat{\theta}-\theta)\right\|_{\rho \times p}^{2}\right]=\mathbb{E}\left[\left\|X_{\text {new }}^{T}(\hat{\theta}-\theta)\right\|_{1 \times p}^{2}\right]$

Estimation strategy

Estimation procedure

(1) Choose a collection \mathcal{G} of candidate graphs e.g. all the graphs with p vertices and degree $\leq D$,
(2) Associate to each graph $g \in \mathcal{G}$ an estimator $\hat{\theta}_{g}$

$$
\hat{o}_{g}=\underset{\text { A~g }}{\operatorname{argmin}}\|\times(1-A)\|_{n \times p} \quad(\text { empirical MSEP })
$$

(3) Select one $\hat{\theta}_{\hat{g}}$ by minimizing a penalized empirical risk with a criterion insnired by that in Baraud et al

Estimation strategy

Estimation procedure

(1) Choose a collection \mathcal{G} of candidate graphs
e.g. all the graphs with p vertices and degree $\leq D$,
(2) Associate to each graph $g \in \mathcal{G}$ an estimator $\hat{\theta}_{g}$

(3) Select one $\hat{\theta}_{\hat{g}}$ by minimizing a penalized empirical risk with a criterion inspired by that in Baraud et al.

Estimation strategy

Estimation procedure

(1) Choose a collection \mathcal{G} of candidate graphs e.g. all the graphs with p vertices and degree $\leq D$,
(2) Associate to each graph $g \in \mathcal{G}$ an estimator $\hat{\theta}_{g}$

$$
\hat{\theta}_{g}=\underset{A \sim g}{\operatorname{argmin}}\|X(I-A)\|_{n \times p}^{2} \quad(\text { empirical MSEP })
$$

(3) Select one $\hat{\theta}_{\hat{g}}$ by minimizing a penalized empirical risk with a criterion inspired by that in Baraud et al

Estimation strategy

Estimation procedure

(1) Choose a collection \mathcal{G} of candidate graphs e.g. all the graphs with p vertices and degree $\leq D$,
(2) Associate to each graph $g \in \mathcal{G}$ an estimator $\hat{\theta}_{g}$

$$
\hat{\theta}_{g}=\underset{A \sim g}{\operatorname{argmin}}\|X(I-A)\|_{n \times p}^{2} \quad(\text { empirical MSEP })
$$

(3) Select one $\hat{\theta}_{\hat{g}}$ by minimizing a penalized empirical risk with a criterion inspired by that in Baraud et al.

Theorem: risk bound.

When $\operatorname{deg}(\mathcal{G})=\max \{\operatorname{deg}(g), g \in \mathcal{G}\}$ fulfills

$$
\operatorname{deg}(\mathcal{G}) \leq \rho \frac{n}{2(1.1+\sqrt{\log p})^{2}}, \quad \text { for some } \rho<1
$$

then the MSEP of $\hat{\theta}$ is bounded by

Theorem: risk bound.

When $\operatorname{deg}(\mathcal{G})=\max \{\operatorname{deg}(g), g \in \mathcal{G}\}$ fulfills

$$
\operatorname{deg}(\mathcal{G}) \leq \rho \frac{n}{2(1.1+\sqrt{\log p})^{2}}, \quad \text { for some } \rho<1
$$

then the MSEP of $\hat{\theta}$ is bounded by
$\operatorname{MSEP}(\hat{\theta}) \leq c_{\rho} \log (p) \inf _{g \in \mathcal{G}}\left\{\operatorname{MSEP}\left(\hat{\theta}_{g}\right) \vee \frac{\left\|C^{1 / 2}(I-\theta)\right\|^{2}}{n}\right\}+R_{n}$

Theorem: risk bound.

When $\operatorname{deg}(\mathcal{G})=\max \{\operatorname{deg}(g), g \in \mathcal{G}\}$ fulfills

$$
\operatorname{deg}(\mathcal{G}) \leq \rho \frac{n}{2(1.1+\sqrt{\log p})^{2}}, \quad \text { for some } \rho<1
$$

then the MSEP of $\hat{\theta}$ is bounded by
$\operatorname{MSEP}(\hat{\theta}) \leq c_{\rho} \log (p) \inf _{g \in \mathcal{G}}\left\{\operatorname{MSEP}\left(\hat{\theta}_{g}\right) \vee \frac{\left\|C^{1 / 2}(l-\theta)\right\|^{2}}{n}\right\}$

Theorem: risk bound.

When $\operatorname{deg}(\mathcal{G})=\max \{\operatorname{deg}(g), g \in \mathcal{G}\}$ fulfills

$$
\operatorname{deg}(\mathcal{G}) \leq \rho \frac{n}{2(1.1+\sqrt{\log p})^{2}}, \quad \text { for some } \rho<1
$$

then the MSEP of $\hat{\theta}$ is bounded by
$\operatorname{MSEP}(\hat{\theta}) \leq c_{\rho} \log (p) \inf _{g \in \mathcal{G}}\left\{\operatorname{MSEP}\left(\hat{\theta}_{g}\right) \vee \frac{\left\|C^{1 / 2}(I-\theta)\right\|^{2}}{n}\right\}$

Theorem: risk bound.

When $\operatorname{deg}(\mathcal{G})=\max \{\operatorname{deg}(g), g \in \mathcal{G}\}$ fulfills

$$
\operatorname{deg}(\mathcal{G}) \leq \rho \frac{n}{2(1.1+\sqrt{\log p})^{2}}, \quad \text { for some } \rho<1
$$

then the MSEP of $\hat{\theta}$ is bounded by
$\operatorname{MSEP}(\hat{\theta}) \leq c_{\rho} \log (p) \inf _{g \in \mathcal{G}}\left\{\operatorname{MSEP}\left(\hat{\theta}_{g}\right) \vee \frac{\left\|C^{1 / 2}(I-\theta)\right\|^{2}}{n}\right\}+R_{n}$ where $R_{n}=O\left(\operatorname{Tr}(C) e^{-\kappa_{\rho} n}\right)$.

Theory

Condition on the degree

How far can we trust the empirical MSEP?

Prediction error:
$\operatorname{MSEP}(\hat{\theta})=\mathbb{E}\left(\left\|C^{1 / 2}(\theta-\hat{\theta})\right\|^{2}\right)=\mathbb{E}\left(\left\|C^{1 / 2}(I-\hat{\theta})\right\|^{2}\right)-\left\|C^{1 / 2}(I-\theta)\right\|^{2}$

Proposition: From empirical to population MSEP

 Under the previous condition on the degree, we have with large probabilityfor all matrices $\hat{\theta} \in \bigcup_{g \in \mathcal{G}} \Theta_{g}$

How far can we trust the empirical MSEP?

Prediction error:
$\operatorname{MSEP}(\hat{\theta})=\mathbb{E}\left(\left\|C^{1 / 2}(\theta-\hat{\theta})\right\|^{2}\right)=\mathbb{E}\left(\left\|C^{1 / 2}(I-\hat{\theta})\right\|^{2}\right)-\left\|C^{1 / 2}(I-\theta)\right\|^{2}$

Proposition: From empirical to population MSEP

Under the previous condition on the degree, we have with large probability
$(1-\delta)\left\|C^{1 / 2}(I-\hat{\theta})\right\|_{p \times p} \leq \frac{1}{\sqrt{n}}\|X(I-\hat{\theta})\|_{n \times p} \leq(1+\delta)\left\|C^{1 / 2}(I-\hat{\theta})\right\|_{p \times p}$
for all matrices $\hat{\theta} \in \bigcup_{g \in \mathcal{G}} \Theta_{g}$.

Lemma: Restricted Inf / Sup of Random Matrices

Consider a $n \times p$ matrix Z with $n<p$ and i.i.d. $Z_{i, j} \sim \mathcal{N}(0,1)$. Consider also a collection V_{1}, \ldots, V_{N} of subspaces of \mathbb{R}^{p} with dimension $d<n$.

Then for any $x>0$
$\mathbb{P}\left[\inf _{v \in V_{1} \cup \ldots \cup V_{N}} \frac{\frac{1}{\sqrt{n}}\|Z v\|}{\|v\|} \leq 1-\frac{\sqrt{d}+\sqrt{2 \log N}+\delta_{N}+x}{\sqrt{n}}\right] \leq e^{-x^{2} / 2}$ where $\delta_{N}=\frac{1}{N \sqrt{8 \log N}}$.

A geometrical constraint

When $C=I$, there exists some constant $c(\delta)>0$ such that for any n, p, \mathcal{G} fulfilling

$$
\operatorname{deg}(\mathcal{G}) \geq c(\delta) \frac{n}{1+\log (p / n)}
$$

there exists no $n \times p$ matrix X fulfilling

$$
(1-\delta)\left\|C^{1 / 2}(I-\hat{\theta})\right\| \leq \frac{1}{\sqrt{n}}\|X(I-\hat{\theta})\| \leq(1+\delta)\left\|C^{1 / 2}(I-\hat{\theta})\right\|
$$

for all $\hat{\theta} \in \bigcup_{g \in \mathcal{G}} \Theta_{g}$.

In practice

Numerical performance

Random graphs, $n=15$ and p increases

Conclusion

Some nice features:

- good theoretical properties: non-asymptotic control of the MSEP with no condition on the covariance matrix C
- good numerical performances: even when $n \ll p$

BUT

- very high numerical complexity:
typically $n \times p^{\operatorname{deg}(\mathcal{G})+1}$
\Longrightarrow cannot be used in practice when $p>50$

Ongoing work: with S. Huet and N. Verzelen
Reduction of the size of the collection of graph, using datadriven collections.

Conclusion

Some nice features:

- good theoretical properties: non-asymptotic control of the MSEP with no condition on the covariance matrix C
- good numerical performances: even when $n \ll p$

BUT

- very high numerical complexity: typically $n \times p^{\operatorname{deg}(\mathcal{G})+1}$
\Longrightarrow cannot be used in practice when $p>50 \ldots$

Ongoing work: with S. Huet and N. Verzelen
Reduction of the size of the collection of graph, using datadriven collections.

Conclusion

Some nice features:

- good theoretical properties: non-asymptotic control of the MSEP with no condition on the covariance matrix C
- good numerical performances: even when $n \ll p$

BUT

- very high numerical complexity:
typically $n \times p^{\operatorname{deg}(\mathcal{G})+1}$
\Longrightarrow cannot be used in practice when $p>50 \ldots$

Ongoing work: with S. Huet and N. Verzelen
Reduction of the size of the collection of graph, using datadriven collections.

References

Main reference of the talk

C. Giraud. Estimation of Gaussian graphs by model selection. Electronic Journal of Statistics. Vol. 2 (2008) pp. 542-563

Related references

- Y. Baraud, C. Giraud, S. Huet. Gaussian model selection with unknown variance. To appear in the Annals of Statistics (2008).
- N. Verzelen. High-dimensional Gaussian model selection on a Gaussian design. Personal communication

