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Gene - gene regulation network of E. coli
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Protein - protein network of S. cerevisiae

1458 proteins (vertices) and their 1948 known interactions (edges)
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Inferring gene regulation networks

Data: massive transcriptomic data sets produced by microarrays.

Differential analysis of data obtained in
different conditions: with or without deletion
of a gene, with or without stress, etc.

Analysis of the conditional dependences
in the data (exploits the whole data set).
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A few statistical tools

Descriptive tools:

Kernel methods (supervised learning)

Model based tools:

Bayesian Networks

Gaussian Graphical Models
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Gaussian Graphical Models
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Gaussian Graphical Models

Statistical model: The transcription levels (X (1), . . . ,X (p)) of the
p genes are modeled by a Gaussian law in Rp.

Graph of the conditional dependences: graph g with

an edge i
g∼ j between the genes i and j

iff

X (i) and X (j) are not independent given
{
X (k), k 6= i , j

}

regulation network ←→ graph g
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The task of the statistician

Goal: estimate g from a sample X1, . . . ,Xn.

Main difficulty: n� p

p ≈ a few 100 to a few 1000 genes

n ≈ a few tens

New algorithms: based on thresholding or regularization

−→ many of them have quite disappointing numerical
performances (Villers et al. 2008)

−→ no theoretical results or in an asymptotic framework (with
strong hypotheses on the covariance)
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Estimation by model selection
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Partial correlations

Hypothesis: (X (1), . . . ,X (p)) ∼ N (0,C ) in Rp, with C � 0.

Notation: We write θ =
(
θ
(j)
k

)
for the p × p matrix such that

θ
(j)
j = 0 and E

(
X (j) | X (k), k 6= j

)
=

∑
k 6=j θ

(j)
k X (k).

Skeleton of θ: we have θ
(j)
i =

Cov(X (i),X (j)|X (k), k 6=i ,j)
Var(X (j)|X (k), k 6=j)

so

θ
(j)
i 6= 0 ⇐⇒ i

g∼ j

Goal: Estimate θ from a sample X1, . . . ,Xn with quality criterion

MSEP(θ̂) = E
[
‖C 1/2(θ̂ − θ)‖2p×p

]
= E

[
‖XT

new (θ̂ − θ)‖21×p

]
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Estimation strategy

Estimation procedure

1 Choose a collection G of candidate graphs

e.g. all the graphs with p vertices and degree ≤ D,

2 Associate to each graph g ∈ G an estimator θ̂g

θ̂g = argmin
A∼g

‖X (I − A)‖2n×p (empirical MSEP)

3 Select one θ̂ĝ by minimizing a penalized empirical risk

with a criterion inspired by that in Baraud et al.
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Theorem: risk bound.
When deg(G) = max {deg(g), g ∈ G} fulfills

deg(G) ≤ ρ
n

2
(
1.1 +

√
log p

)2
, for some ρ < 1,

then the MSEP of θ̂ is bounded by

MSEP(θ̂) ≤ cρ log(p) inf
g∈G

{
MSEP(θ̂g ) ∨ ‖C

1/2(I − θ)‖2

n

}
+ Rn

where Rn = O
(
Tr(C )e−κρn

)
.
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Theory

Condition on the degree
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How far can we trust the empirical MSEP?

Prediction error:
MSEP(θ̂) = E(‖C 1/2(θ−θ̂)‖2) = E(‖C 1/2(I−θ̂)‖2)−‖C 1/2(I−θ)‖2

Proposition: From empirical to population MSEP
Under the previous condition on the degree, we have with large
probability

(1−δ)‖C 1/2(I−θ̂)‖p×p ≤
1√
n
‖X (I−θ̂)‖n×p ≤ (1+δ)‖C 1/2(I−θ̂)‖p×p

for all matrices θ̂ ∈
⋃

g∈G Θg .
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Lemma: Restricted Inf / Sup of Random Matrices

Consider a n × p matrix Z with n < p and i.i.d. Zi ,j ∼ N (0, 1).
Consider also a collection V1, . . . ,VN of subspaces of Rp with di-
mension d < n.

Then for any x > 0

P

[
inf

v∈V1∪...∪VN

1√
n
‖Zv‖
‖v‖

≤ 1−
√

d +
√

2 log N + δN + x√
n

]
≤ e−x2/2

where δN = 1
N
√

8 log N
.
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A geometrical constraint

When C = I , there exists some constant c(δ) > 0 such that for
any n, p,G fulfilling

deg(G) ≥ c(δ)
n

1 + log (p/n)
,

there exists no n × p matrix X fulfilling

(1− δ)‖C 1/2(I − θ̂)‖ ≤ 1√
n
‖X (I − θ̂)‖ ≤ (1 + δ)‖C 1/2(I − θ̂)‖

for all θ̂ ∈
⋃

g∈G Θg .
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In practice

Numerical performance
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Random graphs, n = 15 and p increases
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Conclusion

Some nice features:

good theoretical properties: non-asymptotic control of the
MSEP with no condition on the covariance matrix C

good numerical performances: even when n� p

BUT

very high numerical complexity:
typically n × pdeg(G)+1

=⇒ cannot be used in practice when p > 50 . . .

Ongoing work: with S. Huet and N. Verzelen

Reduction of the size of the collection of graph, using data-
driven collections.
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