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Introduction

Motivation

Descriptive statistic: is futg is a (weak) white noise?
Model diagnostic

AR: but = ut �bθ� = Xt � bθ0 � bθ1Xt�1 � � � � � bθkXt�k
ARCH: but = ut �bθ� = X 2tbσ2t � 1, wherebσ2t = bθ0 + bθ1X 2t�1 + � � �+ bθkX 2t�k
If fut = ut

�
plimbθ�g is not a white noise, the lag

order k should be increased

Economics : Market E¢ ciency and Rational
Expectation Hypothesis
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Introduction

Framework

futg stationary process with E [ut ] = 0 and �nite
variance R0
Covariance function: Rj = cov(ut , ut+j )

Sample covariances: bRj = 1
n ∑n

t=j+1 butbut�j
Hypotheses

H0 : Rj = 0 for all j 6= 0
HA : Rj 6= 0 for some j 6= 0

Technical conditions

Absolute summability Cumulants of futg up to 8thbut (θ) twice di¤erentiable w.r.t to θbθ n1/2 consistent
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Plan of the talk

Rest of the talk

Some testing procedures: Cramer von Mises tests and
smooth tests
Main goals of the talk
The test
Null limit distribution
Rate consistency
Adaptive rate optimality: "sparse" alternatives
(Simulations)
Applications to �nancial squared returns
Final remarks
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Some testing procedures

Cramer von Mises type tests

CvM =
n

π2

n�1
∑
j=1

1
j2

 bRjbσj
!2
,

futg observed, bσj = bR0 or heteroscedasticity robust (Lobato
et al, 2001)

Does not use any smoothing parameters

Detects n1/2 Pitman local alternatives

Not suitable for alternatives with small correlations at
low order
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Some testing procedures

Smooth test statistics

cBPp = n
p

∑
j=1

 bRjbσj
!2

(Box and Pierce 1970),

bSp = n
n�1
∑
j=1

K 2
�
j
p

� bRjbσj
!2

(Hong 1996)

p = truncation/smoothing parameter

Does not downweight large j , but p is di¢ cult to
choose in practice
Asymptotically minimax (Ermakov, 1994) against
smooth alternatives, but for a p dependent of the
unknown alternative
Does not detect n1/2 Pitman local alternatives if p is
too large
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Some testing procedures

Data-driven choice of the smoothing parameter

Fan and Yao (2005) propose

max
p2P

bSp � E (p)
V (p)

No theoretical study
Lack of proper critical values for usual sample sizes

�Rule of thumb� for smooth tests (Hong (1996),
Andrews (1991), Newey West (1994))

are in general �optimal� for estimation of the spectral
density but not for testing
No clear limit distribution under the null due to a
random choice of p
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Main goals

Main goals of the talk

To propose a test that

1 has a simple null limit distribution
2 achieves adaptive optimal detection of "sparse"
alternatives
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Construction of the test

Construction of the test: improving a �rst initial
test

Many applied works use a moderate deterministic p
(typically, 5, 10, or ln n). The test rejects H0 ifbSp � E (p)

V (p)
� zn (α) ,

where

E (p) = ∑n�1
j=1

�
1� j

n

�
K 2
�
j
p

�
and

V 2(p) = 2∑n�1
j=1

�
1� j

n

�2
K 4
�
j
p

�
are approximation

of the mean and variance of bSp under the null of
independence (Hong, 1996)
E (p) + V (p)zn (α) is a critical value:

Null of indepence: Chi square (Box-Pierce, 1970) or
Fisher, Normal zn (α) (Hong, 1996, p ! ∞, estimated
residuals)
Null of non correlation: mixture of Chi squares or
bootstraped (Francq et al (2005), Romano and Thombs
(1996), estimated residuals).
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Construction of the test

When should I increase my favorite trunctation
parameter?

I should change my favorite p for a larger p if bSp
strongly di¤ers from bSp , i.e. if for a level λn typically
tending to 0

(bSp � bSp)� E (p, p)
V (p, p)

� zn (λn) , where

E (p, p) = E (p)� E (p),

V 2(p, p) = 2
n�1
∑
j=1

�
1� j

n

�2 �
K 2
�
j
p

�
�K 2

�
j
p

��2
.

The �nal test uses the smoothing parameter

ep = arg max
p2fp,pg

��bSp � bSp�� E (p, p)� zn (λn)V (p, p)�
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Construction of the test

The proposed test

γn � 0 penalty sequence, P =
�
p, 2p, ..., 2Q�1p = p

	
bp = argmax

p2P

��bSp � bSp�� E (p, p)� γnV (p, p)
�
.

Rejects H0 if bSbp � E (p)
V (p)

� zn (α) .

The test uses that P
�bp = p�! 1 under the null:

for the studentization with E (p) and V (p) (improves
power)
when choosing the critical value zn (α) = zn

�
α; p
�
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Null limit distribution

A penalty lower bound

Theorem
Suppose that ut is identically distributed. Then, if
p = o(n1/3), and if the selection sequence fγn, n � 1g
satis�es

γn � (2 ln ln n)
1/2 + ε for some ε > 0, (1)

bp = p with a probability tending to 1 under the null, and the
test is asymptotically of level α.
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Rate consistency

Rate consistency

Theorem
Assume that γn diverges. Consider a sequence of
alternatives fut ,ng. Then the test is consistent, if, for some
τ large enough,

n
∞

∑
j=1

�
Rj ,n
R0,n

�2
� τ2 min

p2[p,p]

 
n

∞

∑
j=p

�
Rj ,n
R0,n

�2
+ γn (2p)

1/2

!
.

(2)

The RHS of (2) is a �bias-variance� trade o¤ when

estimating n∑∞
j=1

�
Rj
R0

�2
between:

The �bias�of cBPp � E (p), n∑∞
j=p

�
Rj ,n
R0,n

�2
.

The penalisation term γnV (p, p) = O
�

γn (2p)
1/2
�
,

which plays the role of a variance
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Sparse alternatives

A framework for sparse alternatives

3 "ingredients" to describe the "sparsity" of fut ,ng
1 A maximal lag index Pn, such that the correlations at
lags larger than Pn are negligible:

∞

∑
j=Pn+1

�
Rj ,n
R0,n

�2
= o

 
∞

∑
j=1

�
Rj ,n
R0,n

�2!
2 A rate ρn ! 0 used to de�ne "signi�cant" correlation
coe¢ cients, j � Pn:

Rj ,n
R0,n

"signi�cant" if

����Rj ,nR0,n

���� � ρn.

3 A lower bound Nn for the number of "signi�cant"
correlation coe¢ cients, j � Pn:

# fjRj ,n/R0,n j � ρn, j 2 [1,Pn ]g � Nn.
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Sparse alternatives

Adaptive rate optimality for sparse alternatives

Theorem

Assume that γn diverges with γn = o(p
1/2). Consider a

sequence of alternatives fut ,ng. Suppose that, for some
unknown Pn in [p, p] and ρn ! 0,

∞

∑
j=Pn+1

�
Rj ,n
R0,n

�2
= o

 
Pn

∑
j=1

�
Rj ,n
R0,n

�2!
,

# fjRj ,n/R0,n j � ρn, j 2 [1,Pn ]g � Nn.

Then the test is consistent, if, for some τ large enough,

ρn �
τ

n1/2

�
γnP

1/2
n

Nn

�1/2

.
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Sparse alternatives

Allows for detection of correlation coe¢ cients of order
o
�

1
n1/2

�
when P 1/2

n
Nn

! 0.

When γn � (2 ln ln n)
1/2, the condition

ρn �
τ

n1/2

�
γnP

1/2
n

Nn

�1/2

cannot be improved when P 1/2
n
Nn

! 0, Pn being unknown.

Theorem

There is a τ in [0, 1] and sequences of alternatives satisfying

ρn �
τ

n1/2

 
(2 ln ln n)1/2 P1/2

n

Nn

!1/2

,
P1/2
n

Nn
! 0,

that cannot be detected by any test.
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Simulations

Simulation setup

γn = (2� ln(Q � 1))1/2 + 3.2, Q = #P
n=200: P = f2, 4, 8, 16, 32g
n=1000: P = f2, 4, 8, 16, 32, 64, 128, 256g
Uniform kernel=Box Pierce statistics: critical value
given by Chi Square (2)

Parzen kernel

k(x) =

8<:
1� 6x2 + 6jx j3 jx j � 1

2 ,
2(1� jx j)3 1

2 � jx j � 1,
0 otherwise,

critical value given by Gamma approximations matching
the two �rst moments E (2) and V (2).
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Simulations

Test statistics

GGL: Data-driven bp
Uniform Kernel (Box Pierce)
Parzen Kernel

IMSE =�Rule of Thumb�: p given by a data-driven
procedure as in Andrews (1991), Newey West (1994)

CVM: Cramer von Mises
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Simulations

Null hypothesis: 200 observations

Table 1:null, 200 obs

GGL GGL IMSE CVM

Box Pierce Parzen Parzen CVM

10 % 5 % 10 % 5 % 10 % 5 % 10 % 5 %

Normal 9.45 5.00 9.77 4.94 10.32 4.92 9.36 4.70

Student(5) 9.58 5.10 9.54 4.83 10.01 4.81 9.24 4.60

Chi-square 9.18 4.79 9.77 4.74 10.29 4.74 9.14 4.48
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Simulations

Null hypothesis: 1000 observations

Table 2:null, 1000 obs

GGL GGL IMSE CVM

Box Pierce Parzen Parzen CVM

10 % 5 % 10 % 5 % 10 % 5 % 10 % 5 %

Normal 10.30 5.04 10.20 5.00 11.21 5.43 10.12 4.91

Student(5) 10.10 4.93 10.05 4.89 10.82 5.36 9.54 4.92

Chi-square 9.62 5.08 10.29 5.03 11.25 5.37 9.88 4.82
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Simulations

Alternative hypothesis: Cramer von Mises
alternatives

n
∞

∑
j=1

1
j2

�
Rj
R0

�2
= 3, n = 200

Table 3: 200 obs

GGL GGL IMSE CVM

Box Pierce Parzen Parzen CVM

10 % 5 % 10 % 5 % 10 % 5 % 10 % 5 %

MA(1) 44.17 30.96 53.66 40.84 54.48 40.70 52.34 39.34

MA(4) 100.00 100.00 99.98 99.98 17.11 9.86 77.46 41.87

AR(1) 42.82 31.12 52.59 39.57 53.25 39.51 51.20 38.45

AR(6) 100.00 100.00 100.00 100.00 35.88 25.64 89.74 69.03

MA(1) : ut = εt � .12εt�1, MA(4) : ut = εt � .82εt�4

AR(1) : ut = .12ut�1 + εt , AR(6) : ut = .68ut�6 + εt
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Simulations

Alternative hypothesis: Cramer von Mises
alternatives,

n
∞

∑
j=1

1
j2

�
Rj
R0

�2
= 3, n = 1000

Table 4: 1000 obs

GGL GGL IMSE CVM

truncated Parzen Parzen CVM

10 % 5 % 10 % 5 % 10 % 5 % 10 % 5 %

MA(1) 43.65 31.41 53.14 40.14 53.94 40.51 52.01 39.58

MA(4) 99.98 99.98 98.92 98.92 12.08 6.07 75.88 41.12

AR(1) 44.72 32.38 54.24 41.35 54.93 41.80 52.86 40.82

AR(6) 100.00 100.00 100.00 100.00 16.18 9.07 84.89 47.92

MA(1) : ut = εt � .06εt�1, MA(4) : ut = εt � .23εt�4

AR(1) : ut = .05ut�1 + εt , AR(6) : ut = .32ut�6 + εt
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Simulations

Alternative hypothesis: Small MA coe¢ cients

ut = εt +
(3γn)

1/2

n1/2P 1/4 (ζ1εt�1 + � � �+ ζP εt�P ),
fεtg , fζtg i.i.d. N (0, 1).

Table 5: 200 obs

GGL GGL IMSE CVM

Box Pierce Parzen Parzen CVM

10 % 5 % 10 % 5 % 10 % 5 % 10 % 5 %

P=15 83.11 79.96 68.11 64.38 50.20 39.64 59.39 46.54

P=30 78.45 75.25 54.21 49.15 42.58 31.69 49.17 36.95

Table 6: 1000 obs.

GGL GGL IMSE CVM

Box Pierce Parzen Parzen CVM

10 % 5 % 10 % 5 % 10 % 5 % 10 % 5 %

P=75 94.60 93.75 92.90 92.33 40.44 29.14 42.75 30.55

P=150 94.03 93.26 79.71 77.84 32.56 21.66 33.13 22.24
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Applications

Squared returns, DJI (monthly)

n
�bRj/bσj�2, j = 1, ..., 256, n = 699

CvM, IMSE and Maxj2[1,128] n
bR 2jbσ2j accepts H0 at 5% and

10% (P value CvM=12%)
Adaptive test rejects H0 at any level (bp = 256,
P = f4, ..., 256g).
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Applications

Squared returns, Coca (monthly)

n
�bRj/bσj�2, j = 1, ..., 128, n = 555

CvM, IMSE and Maxj2[1,128] n
bR 2jbσ2j accepts H0 at any

reasonable signi�cant level.
Adaptive test rejects H0 at any level (bp = 64,
P = f4, ..., 128g).
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Final remarks

To conclude:

The adaptive test

Has simple critical values, that seems to be accurate in
our simulation experiments

Can detect correlation coe¢ cients smaller than 1/n1/2

Is adaptive rate optimal for detection of smooth
alternatives

Can detect Pitman alternatives which goes to the null
with a rate close to 1/n1/2

Succeeds to detect correlations where other tests failed
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