Optimal adaptive detection of small correlation functions

Alain Guay Emmanuel Guerre Stepana Lazarova

Vienna, 26 July 2008

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vlain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Introduction

Motivation

- Descriptive statistic: is $\{u_t\}$ is a (weak) white noise?
- Model diagnostic

• AR:
$$\hat{u}_t = u_t\left(\hat{\theta}\right) = X_t - \hat{\theta}_0 - \hat{\theta}_1 X_{t-1} - \dots - \hat{\theta}_k X_{t-k}$$

• ARCH: $\hat{u}_t = u_t\left(\hat{\theta}\right) = \frac{X_t^2}{\hat{\sigma}_t^2} - 1$, where

- $\widehat{\sigma}_t^2 = \widehat{\theta}_0 + \widehat{\theta}_1 X_{t-1}^2 + \dots + \widehat{\theta}_k X_{t-k}^2$
- If $\{u_t = u_t (\operatorname{plim} \widehat{\theta})\}$ is not a white noise, the lag order k should be increased
- Economics : Market Efficiency and Rational Expectation Hypothesis

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

Introduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Introduction

Framework

- $\{u_t\}$ stationary process with $\mathbb{E}\left[u_t
 ight]=0$ and finite variance R_0
- Covariance function: $R_j = \operatorname{cov}(u_t, u_{t+j})$
- Sample covariances: $\widehat{R}_j = \frac{1}{n} \sum_{t=j+1}^n \widehat{u}_t \widehat{u}_{t-j}$
- Hypotheses
 - $H_0: R_j = 0$ for all $j \neq 0$
 - $H_A: \tilde{R_j} \neq 0$ for some $j \neq 0$
- Technical conditions
 - Absolute summability Cumulants of $\{u_t\}$ up to 8th
 - $\widehat{u}_{t}\left(heta
 ight)$ twice differentiable w.r.t to heta
 - $\hat{\theta} n^{1/2}$ consistent

Guay, Guerre, Lazarova

Introduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Some testing procedures: Cramer von Mises tests and smooth tests Main goals of the talk The test Null limit distribution Rate consistency Adaptive rate optimality: "sparse" alternatives (Simulations) Applications to financial squared returns Final remarks Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Cramer von Mises type tests

$$\mathsf{CvM} = rac{n}{\pi^2}\sum_{j=1}^{n-1}rac{1}{j^2}\left(rac{\widehat{R}_j}{\widehat{\sigma}_j}
ight)^2$$
 ,

 $\{u_t\}$ observed, $\widehat{\sigma}_j = \widehat{R}_0$ or heteroscedasticity robust (Lobato et al, 2001)

- Does not use any smoothing parameters
- Detects $n^{1/2}$ Pitman local alternatives
- Not suitable for alternatives with small correlations at low order

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

Introduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Smooth test statistics

$$\widehat{BP}_{p} = n \sum_{j=1}^{p} \left(\frac{\widehat{R}_{j}}{\widehat{\sigma}_{j}}\right)^{2} \text{ (Box and Pierce 1970),}$$

$$\widehat{S}_{p} = n \sum_{j=1}^{n-1} K^{2} \left(\frac{j}{p}\right) \left(\frac{\widehat{R}_{j}}{\widehat{\sigma}_{j}}\right)^{2} \text{ (Hong 1996)}$$

p = truncation/smoothing parameter

- Does not downweight large *j*, but *p* is difficult to choose in practice
- Asymptotically minimax (Ermakov, 1994) against smooth alternatives, but for a *p* dependent of the unknown alternative
- Does not detect n^{1/2} Pitman local alternatives if p is too large

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Some testing procedures

Data-driven choice of the smoothing parameter

• Fan and Yao (2005) propose

$$\max_{p \in \mathcal{P}} \frac{\widehat{S}_p - E(p)}{V(p)}$$

- No theoretical study
- Lack of proper critical values for usual sample sizes
- "Rule of thumb" for smooth tests (Hong (1996), Andrews (1991), Newey West (1994))
 - are in general "optimal" for estimation of the spectral density but not for testing
 - No clear limit distribution under the null due to a random choice of *p*

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Main goals of the talk

To propose a test that

- has a simple null limit distribution
- achieves adaptive optimal detection of "sparse" alternatives

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Construction of the test

Construction of the test: improving a first initial test

Many applied works use a moderate deterministic \underline{p} (typically, 5, 10, or ln *n*). The test rejects H_0 if

$$\frac{\widehat{S}_{\underline{p}}-E(\underline{p})}{V(\underline{p})}\geq z_{n}\left(\alpha\right),$$

where

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Construction of the test

When should I increase my favorite trunctation parameter?

• I should change my favorite \underline{p} for a larger \overline{p} if $\widehat{S}_{\overline{p}}$ strongly differs from $\widehat{S}_{\underline{p}}$, i.e. if for a level λ_n typically tending to 0

$$\frac{(\widehat{S}_{\overline{p}} - \widehat{S}_{\underline{p}}) - E(\overline{p}, \underline{p})}{V(\overline{p}, \underline{p})} \geq z_n(\lambda_n), \text{ where }$$

$$E(\overline{p}, \underline{p}) = E(\overline{p}) - E(\underline{p}),$$

$$V^{2}(\overline{p}, \underline{p}) = 2\sum_{j=1}^{n-1} \left(1 - \frac{j}{n}\right)^{2} \left(K^{2}\left(\frac{j}{\overline{p}}\right) - K^{2}\left(\frac{j}{\underline{p}}\right)\right)^{2}$$

• The final test uses the smoothing parameter

$$\widetilde{p} = \arg \max_{p \in \left\{\underline{p}, \overline{p}\right\}} \left(\left(\widehat{S}_p - \widehat{S}_{\underline{p}} \right) - E(p, \underline{p}) - z_n\left(\lambda_n\right) V(p, \underline{p}) \right)$$

.

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution Rate consistency Sparse alternatives Simulations Applications Final remarks

The proposed test

•
$$\gamma_n \geq 0$$
 penalty sequence, $\mathcal{P} = \left\{ \underline{p}, 2\underline{p}, ..., 2^{Q-1}\underline{p} = \overline{p} \right\}$

$$\widehat{p} = \arg \max_{p \in \mathcal{P}} \left(\left(\widehat{S}_p - \widehat{S}_{\underline{p}} \right) - E(p, \underline{p}) - \gamma_n V(p, \underline{p}) \right).$$

• Rejects H_0 if

$$\frac{\widehat{S}_{\widehat{p}}-E(\underline{p})}{V(\underline{p})}\geq z_{n}\left(\alpha\right).$$

The test uses that $\mathbb{P}\left(\widehat{
ho}=\underline{
ho}
ight)
ightarrow 1$ under the null:

- for the studentization with $E(\underline{p})$ and $V(\underline{p})$ (improves power)
- when choosing the critical value $z_n(\alpha) = z_n(\alpha; p)$

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

A penalty lower bound

Theorem

Suppose that u_t is identically distributed. Then, if $\overline{p} = o(n^{1/3})$, and if the selection sequence $\{\gamma_n, n \ge 1\}$ satisfies

$$\gamma_n \ge (2 \ln \ln n)^{1/2} + \epsilon$$
 for some $\epsilon > 0$, (1)

 $\hat{p} = \underline{p}$ with a probability tending to 1 under the null, and the test is asymptotically of level α .

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

parse alternatives

Simulations

Applications

Rate consistency

Theorem

Assume that γ_n diverges. Consider a sequence of alternatives $\{u_{t,n}\}$. Then the test is consistent, if, for some τ large enough,

$$n\sum_{j=1}^{\infty} \left(\frac{R_{j,n}}{R_{0,n}}\right)^2 \ge \tau^2 \min_{p \in [\underline{p},\overline{p}]} \left(n\sum_{j=p}^{\infty} \left(\frac{R_{j,n}}{R_{0,n}}\right)^2 + \gamma_n \left(2p\right)^{1/2}\right).$$
(2)

• The RHS of (2) is a "bias-variance" trade off when estimating $n \sum_{j=1}^{\infty} \left(\frac{R_j}{R_0}\right)^2$ between:

• The "bias" of
$$\widehat{BP}_p - E(p)$$
, $n \sum_{j=p}^{\infty} \left(\frac{R_{j,n}}{R_{0,n}} \right)^2$.

• The penalisation term $\gamma_n V(p, \underline{p}) = O\left(\gamma_n (2p)^{1/2}\right)$, which plays the role of a variance

Guay, Guerre, Lazarova (UQAM, QM) Adaptive detection of small correlations

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Sparse alternatives

A framework for sparse alternatives

- 3 "ingredients" to describe the "sparsity" of $\{u_{t,n}\}$
 - A maximal lag index P_n , such that the correlations at lags larger than P_n are negligible:

$$\sum_{j=P_n+1}^{\infty} \left(\frac{R_{j,n}}{R_{0,n}}\right)^2 = o\left(\sum_{j=1}^{\infty} \left(\frac{R_{j,n}}{R_{0,n}}\right)^2\right)$$

A rate $\rho_n \rightarrow 0$ used to define "significant" correlation coefficients, *j* ≤ *P_n*:

$$rac{R_{j,n}}{R_{0,n}}$$
 "significant" if $\left|rac{R_{j,n}}{R_{0,n}}
ight|\geq
ho_n.$

• A lower bound N_n for the number of "significant" correlation coefficients, $j \leq P_n$:

$$\#\{|R_{j,n}/R_{0,n}| \ge \rho_n, j \in [1, P_n]\} \ge N_n.$$

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Adaptive rate optimality for sparse alternatives

Theorem

Assume that γ_n diverges with $\gamma_n = o(\overline{p}^{1/2})$. Consider a sequence of alternatives $\{u_{t,n}\}$. Suppose that, for some unknown P_n in $[p, \overline{p}]$ and $\rho_n \rightarrow 0$,

$$\sum_{j=P_{n}+1}^{\infty} \left(\frac{R_{j,n}}{R_{0,n}}\right)^{2} = o\left(\sum_{j=1}^{P_{n}} \left(\frac{R_{j,n}}{R_{0,n}}\right)^{2}\right), \\ \#\{|R_{j,n}/R_{0,n}| \ge \rho_{n}, j \in [1, P_{n}]\} \ge N_{n}.$$

Then the test is consistent, if, for some τ large enough,

$$\rho_n \geq \frac{\tau}{n^{1/2}} \left(\frac{\gamma_n P_n^{1/2}}{N_n}\right)^{1/2}$$

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

Sparse alternatives

Sparse alternatives

• Allows for detection of correlation coefficients of order $o\left(\frac{1}{n^{1/2}}\right)$ when $\frac{P_n^{1/2}}{N_n} \to 0$.

• When $\gamma_n \asymp (2 \ln \ln n)^{1/2}$, the condition

$$\rho_n \geq \frac{\tau}{n^{1/2}} \left(\frac{\gamma_n P_n^{1/2}}{N_n} \right)^{1/2}$$

cannot be improved when $\frac{P_n^{1/2}}{N_n} \rightarrow 0$, P_n being unknown.

Theorem

There is a τ in [0, 1] and sequences of alternatives satisfying

$$\rho_n \ge \frac{\tau}{n^{1/2}} \left(\frac{\left(2\ln\ln n\right)^{1/2} P_n^{1/2}}{N_n} \right)^{1/2} , \ \frac{P_n^{1/2}}{N_n} \to 0,$$

that cannot be detected by any test.

Guay, Guerre, Lazarova (UQAM, QM)

Vienna, 26 July 2008 16 / 26

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Simulation setup

•
$$\gamma_n = (2 \times \ln(Q-1))^{1/2} + 3.2$$
, $Q = \# \mathcal{P}$

• n=200:
$$\mathcal{P} = \{2, 4, 8, 16, 32\}$$

• n=1000: $\mathcal{P} = \{2, 4, 8, 16, 32, 64, 128, 256\}$

- Uniform kernel=Box Pierce statistics: critical value given by Chi Square (2)
- Parzen kernel

$$k(x) = \begin{cases} 1 - 6x^2 + 6|x|^3 & |x| \le \frac{1}{2}, \\ 2(1 - |x|)^3 & \frac{1}{2} \le |x| \le 1, \\ 0 & \text{otherwise,} \end{cases}$$

critical value given by Gamma approximations matching the two first moments E(2) and V(2).

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Test statistics

- **GGL**: Data-driven \hat{p}
 - Uniform Kernel (Box Pierce)
 - Parzen Kernel
- IMSE = "Rule of Thumb": p given by a data-driven procedure as in Andrews (1991), Newey West (1994)
- CVM: Cramer von Mises

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Null hypothesis: 200 observations

GG	iL	GC	1				
		GGL		IMSE		CVM	
Box Pierce		Par	Parzen		Parzen		M
10 %	5 %	10 %	5 %	10 %	5 %	10 %	5 %
9.45	5.00	9.77	4.94	10.32	4.92	9.36	4.70
9.58	5.10	9.54	4.83	10.01	4.81	9.24	4.60
9.18	4.79	9.77	4.74	10.29	4.74	9.14	4.48
	Box P 10 % 9.45 9.58 9.18	Box Pierce 10 % 5 % 9.45 5.00 9.58 5.10 9.18 4.79	Box Pierce Par. 10 % 5 % 10 % 9.45 5.00 9.77 9.58 5.10 9.54 9.18 4.79 9.77	Box Pierce Parzer 10 % 5 % 10 % 5 % 9.45 5.00 9.77 4.94 9.58 5.10 9.54 4.83 9.18 4.79 9.77 4.74	Box Pierce Parzen Parzen 10 % 5 % 10 % 5 % 10 % 9.45 5.00 9.77 4.94 10.32 9.58 5.10 9.54 4.83 10.01 9.18 4.79 9.77 4.74 10.22	Box Pierce Parzer Parzer 10 % 5 % 10 % 5 % 10 % 5 % 9.45 5.00 9.77 4.94 10.32 4.92 9.58 5.10 9.54 4.83 10.01 4.81 9.18 4.79 9.77 4.74 10.29 4.74	Box Pierce Parzen Parzen CV 10 % 5 % 10 % 5 % 10 % 5 % 10 % 9.45 5.00 9.77 4.94 10.32 4.92 9.36 9.58 5.10 9.54 4.83 10.01 4.81 9.24 9.18 4.79 9.77 4.74 10.29 4.74 9.14

11 000 -1

- . . .

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Null hypothesis: 1000 observations

Table 2:null, 1000 obs									
	GGL		GGL		IMSE		CVM		
	Box Pierce		Parzen		Parzen		CVM		
	10 %	5 %	10 %	5 %	10 %	5 %	10 %	5 %	
Normal	10.30	5.04	10.20	5.00	11.21	5.43	10.12	4.91	
Student(5)	10.10	4.93	10.05	4.89	10.82	5.36	9.54	4.92	
Chi-square	9.62	5.08	10.29	5.03	11.25	5.37	9.88	4.82	

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Alternative hypothesis: Cramer von Mises alternatives

$$n\sum_{j=1}^{\infty}\frac{1}{j^2}\left(\frac{R_j}{R_0}\right)^2 = 3, \ n = 200$$

			Table 3:	200 obs				
	GGL G		GG	il In		SE	C۷	/M
	Box Pierce		Parzen		Parzen		CVM	
	10 %	5 %	10 %	5 %	10 %	5 %	10 %	5 %
MA(1)	44.17	30.96	53.66	40.84	54.48	40.70	52.34	39.34
MA(4)	100.00	100.00	99.98	99.98	17.11	9.86	77.46	41.87
AR(1)	42.82	31.12	52.59	39.57	53.25	39.51	51.20	38.45
<i>AR</i> (6)	100.00	100.00	100.00	100.00	35.88	25.64	89.74	69.03
MA(1) :	$u_t =$	ε_t	$12\varepsilon_{t-1}$,	MA	4(4):	$u_t = $	ε_t8	$32\varepsilon_{t-4}$
AR(1) :	$u_t =$.12 <i>u</i> t	$-1 + \varepsilon_t$, AF	R(6) :	$u_t =$.68 <i>u</i> t_	$-6 + \varepsilon_t$

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

Simulations

Alternative hypothesis: Cramer von Mises alternatives,

$$n\sum_{j=1}^{\infty} \frac{1}{j^2} \left(\frac{R_j}{R_0}\right)^2 = 3, n = 1000$$

			Table 4:	1000 obs				
	GGL		GG	GGL		SE	CVM	
	truncated		Parzen		Parzen		CVM	
	10 %	5 %	10 %	5 %	10 %	5 %	10 %	5 %
MA(1)	43.65	31.41	53.14	40.14	53.94	40.51	52.01	39.58
MA(4)	99.98	99.98	98.92	98.92	12.08	6.07	75.88	41.12
AR(1)	44.72	32.38	54.24	41.35	54.93	41.80	52.86	40.82
AR(6)	100.00	100.00	100.00	100.00	16.18	9.07	84.89	47.92
MA(1) :	$u_t =$	ε_t	$06 \epsilon_{t-1}$,	MA	A(4):	$u_t = 0$	$\varepsilon_t - Z$	$23\varepsilon_{t-4}$
AR(1) :	$u_t =$.05 <i>u</i> t	$-1 + \varepsilon_t$, AF	R(6):	$u_t =$.32 <i>u</i> _t _	$-6 + \varepsilon_t$

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Alternative hypothesis: Small MA coefficients

$u_t = \varepsilon_t + \frac{(3\gamma_n)^{1/2}}{n^{1/2}P^{1/4}} \left(\zeta_1 \varepsilon_{t-1} + \cdots + \zeta_P \varepsilon_{t-P} \right),$
$\{\tilde{\varepsilon}_t\}$, $\{\zeta_t\}$ i.i.d. $\mathcal{N}(0, 1)$.

Table 5: 200 obs										
	GGL		G	GGL		SE	CVM			
	Box I	Pierce	Parzen		Parzen		CVM			
	10 %	5 %	10 %	5 %	10 %	5 %	10 %	5 %		
P=15	83.11	79.96	68.11	64.38	50.20	39.64	59.39	46.54		
P=30	78.45	75.25	54.21	49.15	42.58	31.69	49.17	36.95		

	GGL Box Pierce		GGL Parzen		IM	SF	CVM		
					Parzen		CVM		
	10 %	5 %	10 %	5 %	10 %	5 %	10 %	5 %	
P=75	94.60	93.75	92.90	92.33	40.44	29.14	42.75	30.55	
P=150	94.03	93.26	79.71	77.84	32.56	21.66	33.13	22.24	

Adaptive detection of small correlations

Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Final remarks

Guay, Guerre, Lazarova (UQAM, QM)

Adaptive detection of small correlations

Squared returns, DJI (monthly)

- CvM, IMSE and $\operatorname{Max}_{j \in [1,128]} n_{\widehat{\sigma}_{j}^{2}}^{\widehat{R}_{j}^{2}}$ accepts H_{0} at 5% and 10% (*P* value CvM=12%)
- Adaptive test rejects H_0 at any level ($\hat{p} = 256$, $\mathcal{P} = \{4, ..., 256\}$).

Guay, Guerre, Lazarova (UQAM, QM) Adaptive detection of small correlations

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Main goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications

Guay, Guerre, Lazarova (UQAM, QM) Adaptive detection of small correlations

The adaptive test

- Has simple critical values, that seems to be accurate in our simulation experiments
- Can detect correlation coefficients smaller than $1/n^{1/2}$
- Is adaptive rate optimal for detection of smooth alternatives
- Can detect Pitman alternatives which goes to the null with a rate close to $1/n^{1/2}$
- Succeeds to detect correlations where other tests failed

Adaptive detection of small correlations

> Guay, Guerre, Lazarova

ntroduction

Plan of the talk

Some testing procedures

Vain goals

Construction of the test

Null limit distribution

Rate consistency

Sparse alternatives

Simulations

Applications