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Density estimation

Rd -valued i.i.d. random vectors X1, . . . ,Xn

distributed according to unknown probability measure µ
with density f
The L1 norm

‖f − g‖ :=

∫
Rd

|f (x)− g(x)|dx = 2 sup
A

∣∣∣∣∫
A

f (x)dx −
∫

A
g(x)dx

∣∣∣∣
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Kernel density estimate

For a kernel function K and bandwidth h > 0,
let fn be the kernel density estimate with sample size n:

fn(x) =
1

nhd

n∑
i=1

K

(
x − Xi

h

)
.
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Density-free consistency

If
lim

n→∞
hn = 0

and
lim

n→∞
nhd

n = ∞

then, for any density f ,

lim
n→∞

E‖f − fn‖ = 0

and
lim

n→∞
‖f − fn‖ = 0 a.s.
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Rate of convergence

If the density f has a compact support and is twice differentiable,
then

E(‖fn − f ‖) ≤ c1√
nhd

n

+ c2h
2
n.

If hn = cn−1/(d+4) then

E(‖fn − f ‖) ≤ Cn−2/(d+4).

TOO SLOW.
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Model selection for density estimation

We wish to estimate a density f on Rd

that belongs to a parametric family, Fk , where k is unknown,
but Fk ⊂ Fk+1 for all k.

F =
⋃
k≥1

Fk .

the complexity associated with f is defined as

k∗ = min{k ≥ 1 : f ∈ Fk}.
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Example

Fk

is the set of mixtures of d dimensional normal densities,
where the number of components is at most k
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Objective

We wish to introduce an estimate kn of the complexity k∗ and

to pick a density estimate f̂kn in F with

1 kn → k∗ almost surely
(i.e., kn = k∗ almost surely, for all n large enough)

2 and

E
{
‖f̂kn − f ‖

}
= O

(
1√
n

)
.

Biau, Devroye (2004)
kn and f̂kn via projection of the empirical measure with respect to
the Yatracos class
too complex
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Testing homogeneity

Two mutually independent samples

X1, . . . ,Xn and X ′
1, . . . ,X

′
n

distributed according to unknown probability distributions µ and µ′

on Rd .
We are interested in testing the null hypothesis that the two
samples are homogeneous, that is

H0 : µ = µ′.

empirical probability distributions µn and µ′n
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The test statistic

Based on a partition Pn = {An1, . . . ,Anmn} of Rd , we let the test
statistic be defined as

Tn =
mn∑
j=1

|µn(Anj)− µ′n(Anj)|.
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Asymptotic behavior of Tn

Theorem. Under H0, for all 0 < ε < 2,

P{Tn > ε} = e−n(gT (ε)+o(1)),

as n →∞,

where

gT (ε) = (1 + ε/2) ln(1 + ε/2) + (1− ε/2) ln(1− ε/2) ≈ ε2/4.

(Biau, Györfi (2005))
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A strong consistent test

Corollary. Consider the test which rejects H0 when

Tn > 2
√

ln 2

√
mn

n
.

Assume that

lim
n→∞

mn

n
= 0 and lim

n→∞

mn

ln n
= ∞.

Then, under H0, after a random sample size the test makes a.s. no
error.
Moreover, if µ 6= µ′, and for each sphere S centered at the origin

lim
n→∞

max
j :An,j∩S 6=∅

diam(An,j) = 0

then after a random sample size the test makes a.s. no error.
(Biau, Györfi (2005))
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Complexity estimation

Split the sample into two subsamples:

{X1, . . . ,Xn} and {X ′
1, . . . ,X

′
n} = {Xn+1, . . . ,X2n}.

Let Pn = {Anj : j ≥ 1} be a cubic partition of Rd with volume hd
n .

Introduce the statistic

dn,k = inf
g∈Fk

∑
A∈Pn

∣∣∣∣∫
A

g − µ2n(A)

∣∣∣∣ .

Let the threshold be

Tn =
∑
A∈Pn

|µn(A)− µ′n(A)|.

Estimate of k∗:

kn = min{k ≥ 1 : dn,k ≤ Tn}.
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Theorem 1

Assume that, for each k ≥ 1, Fk is closed with respect to the weak
convergence topology.

Then there exists a positive constant κ, depending on f , such that

P {kn 6= k∗} ≤ exp
(
−κ h−d

n

)
,

and consequently, for the choice hn = n−δ with 0 < δ < 1/d ,

kn = k∗

almost surely, for all n large enough.
(Biau, Cadre, Devroye, Györfi (2008))
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Fast density estimate

Fix k ≥ 1 and introduce the (Yatracos) class of sets

Ak =
{
{x : g1(x) > g2(x)} : g1, g2 ∈ Fk

}

and the goodness criterion for a density g ∈ Fk :

∆k(g) = sup
A∈Ak

∣∣∣∣ ∫
A

g − µ2n(A)

∣∣∣∣.
The minimum distance estimate f̂k minimizes the criterion ∆k(g)
over all g in Fk .
The density estimate is

f̂kn .
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Theorem 2

If Ak∗ has finite Vapnik-Chervonenkis dimension

then

E
{
‖f̂kn − f ‖

}
= O

(
1√
n

)
.

(Biau, Devroye (2004))
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Problem

The projection with respect to the Yatracos class is too complex.

For a kernel function K and bandwidth r > 0,
let f2n be the kernel density estimate with sample size 2n:

f2n(x) =
1

2nrd

2n∑
i=1

K

(
x − Xi

r

)
.

let Kr ∗ g be the expectation of the kernel estimate with density g :

Kr ∗ g(x) =
1

rd

∫
K

(
x − z

r

)
g(z)dz .

the estimate f̄n is defined as

f̄n = arg min
g∈Fkn

‖Kr ∗ g − f2n‖,

f̄n is an L1-projection of the kernel density estimate f2n

with fixed bandwidth r .
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Theorem 3

Assume that Fk is closed in the weak convergence topology for
every k ≥ 1.

Choose kn as before
such that the bandwidth is h = hn = (ln n)−(1+δ)/d with δ > 0
Choose the kernel function K such that it is a density function and
its characteristic function is everywhere non-zero.
Suppose that

sup
g∈Fk∗

‖g − f ‖
‖Kr ∗ g − Kr ∗ f ‖

< ∞,

and ∫ √
f < ∞.

Then

E

{
‖f̄n − f ‖

}
≤ O

(
1√
n

)
.
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Luc’s problem

Let f be the density of a multidimensional normal distribution.

Find the optimal density estimate in L1.

min
fn

E‖fn − f ‖

The plug-in estimate is not optimal.
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