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Introduction Setting Goal 1 Goal 2 Conclusion

Problem statment

Predictive inference post model selection in setting with large
dimension and (comparatively) small sample size.

Example: Stenbakken & Souders (1987, 1991): Predict performance
of D/A converters. Select 64 explanatory variables from a total of
8,192 based on a sample of size 88.

Features of this example:

Large number of candidate models

Selected model is complex in relation to sample size

Focus on predictive performance and inference, not on
correctness

Model is selected and fitted to the data once and then used
repeatedly for prediction
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Problem statment

Predictive inference post model selection in setting with large
dimension and (comparatively) small sample size.

Problem studied here:

Given a training sample of size n and a collection M of candidate
models, find a ‘good’ model m ∈M and conduct predictive
inference based on selected model, conditional on the training
sample. Features:

#M� n, i.e., potentially many candidate models

|m| ∼ n, i.e., potentially complex candidate models

no strong regularity conditions
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Overview of results

We consider a model selector and a prediction interval post model
selection (that are based on a variant of generalized
cross-validation) in linear regression with random design.

For Gaussian data we show:

The prediction interval is ‘approximately valid and short’
conditional on the training sample, except on an event whose
probability is less than

C1 #M exp
[
− C2(n− |M|)

]
,

where #M denotes the number of candidate models, and |M|
denotes the number of parameters in the most complex candidate
model.
This finite-sample result holds uniformly over all data-generating
processes that we consider.
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The data-generating process

Gaussian linear model with random design

Consider a response y that is related to a (possibly infinite)
number of explanatory variables xj , j ≥ 1, by

y =
∞∑

j=1

xjθj + u (1)

with x1 = 1. Assume that u has mean zero and is uncorrelated
with the xj ’s. Moreover, assume that the xj ’s for j > 1 and u are
jointly non-degenerate Gaussian, such that the sum converges in
L2.
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The data-generating process

Gaussian linear model with random design

Consider a response y that is related to a (possibly infinite)
number of explanatory variables xj , j ≥ 1, by

y =
∞∑

j=1

xjθj + u (1)

with x1 = 1. Assume that u has mean zero and is uncorrelated
with the xj ’s. Moreover, assume that the xj ’s for j > 1 and u are
jointly non-degenerate Gaussian, such that the sum converges in
L2.

The unknown parameters here are θ, the variance of u, as well as
the means and the variance/covariance structure of the xj ’s.
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The data-generating process

Gaussian linear model with random design

Consider a response y that is related to a (possibly infinite)
number of explanatory variables xj , j ≥ 1, by

y =
∞∑

j=1

xjθj + u (1)

with x1 = 1. Assume that u has mean zero and is uncorrelated
with the xj ’s. Moreover, assume that the xj ’s for j > 1 and u are
jointly non-degenerate Gaussian, such that the sum converges in
L2.

No further regularity conditions are imposed.
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The candidate models and predictors

The candidate models and predictors

Consider a sample (X, Y ) of n independent realizations of (x, y) as
in (1), and a collection M of candidate models. Each model
m ∈M is assumed to satisfy |m| < n− 1. Each model m is fit to
the data by least-squares. Given a new set of explanatory variables
x(f), the corresponding response y(f) is predicted by

ŷ(f)(m) =
∞∑

j=1

x
(f)
j θ̃j(m)

when using model m. Here, x(f), y(f) is another independent
realization from (1), and θ̃(m) is the restricted least-squares
estimator corresponding to m.
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Two goals

(i) Select a ‘good’ model from M for prediction out-of-sample,
and (ii) conduct predictive inference based on the selected model,
both conditional on the training sample.

Two Quantities of Interest

For m ∈M, let ρ2(m) denote the conditional mean-squared error
of the predictor ŷ(f)(m) given the training sample, i.e.,

ρ2(m) = E

[ (
y(f) − ŷ(f)(m)

)2
∣∣∣∣∣∣∣∣X, Y

]
.

For m ∈M, the conditional distribution of the prediction error
ŷ(f)(m)− y(f) given the training sample is

ŷ(f)(m)− y(f)
∣∣∣∣∣∣ X, Y ∼ N(ν(m), δ2(m)) ≡ L(m).

Note that ρ2(m) = ν2(m) + δ2(m).
Hannes Leeb Conditional Predictive Inference Post Model Selection



Introduction Setting Goal 1 Goal 2 Conclusion

Two goals

(i) Select a ‘good’ model from M for prediction out-of-sample,
and (ii) conduct predictive inference based on the selected model,
both conditional on the training sample.

Two Quantities of Interest

For m ∈M, let ρ2(m) denote the conditional mean-squared error
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A useful observation

Write σ2(m) for the conditional variance of the response given
those explanatory variables that are included in model m, i.e.,

σ2(m) = Var[y || xj included in model m, j ≥ 1].

Lemma

δ2(m) ∼ σ2(m)

(
1 +

χ2
|m|−1

χ2
n−|m|+1

)
,

where the χ2-random variables are independent. Similarly,

ν2(m) ∼ 1
n

σ2(m)

(
1 +

χ2
|m|−1

χ2
n−|m|+1

)
,

and σ̂2(m) = RSS(m)/(n− |m|) ∼ σ2(m)χ2
n−|m|/(n− |m|).

[The Lemma extends Theorem 1.3 of Breiman & Friedman (1983).]
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Estimators for ρ2(m)

Note that

E
[
ρ2(m)

]
= σ2(m)

n− 2
n− 1− |m|

(
1 +

1
n

)
.

The Sp criterion (Tukey, 1967):

Sp(m) = σ̂2(m)
n− 2

n− 1− |m|
.

The GCV-criterion (Craven & Wahba, 1978):

GCV(m) = σ̂2(m)
n

n− |m|
.

An auxiliary criterion:

ρ̂2(m) = σ̂2(m)
n

n + 1− |m|
.
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Performance of ρ̂2(m)

Want: ρ̂2(m)/ρ2(m) ≈ 1 or, equivalently, log ρ̂2(m)/ρ2(m) ≈ 0
with high probability.

Theorem

For each ε > 0, we have

P

(∣∣∣∣log
ρ̂2(m)
ρ2(m)

∣∣∣∣ > ε

)
≤ 6 exp

[
−n− |m|

8
ε2

ε + 8

]
,

for each sample size n and uniformly over all data-generating
processes as in (1).
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≤ 6 exp
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−n− |m|

8
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]
,

for each sample size n and uniformly over all data-generating
processes as in (1).

A similar result holds for the absolute difference |ρ̂2(m) − ρ2(m)|,
uniformly over all data-generating processes with bounded vari-
ance, i.e., where Var[y] ≤ s2 (with an upper bound of the form
C1 exp[−(n− |m|) C(ε, s2)]; here s2 is a fixed constant).
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Performance of ρ̂2(m)

Want: ρ̂2(m)/ρ2(m) ≈ 1 or, equivalently, log ρ̂2(m)/ρ2(m) ≈ 0
with high probability.

Theorem

For each ε > 0, we have

P

(∣∣∣∣log
ρ̂2(m)
ρ2(m)

∣∣∣∣ > ε

)
≤ 6 exp

[
−n− |m|

8
ε2

ε + 8

]
,

for each sample size n and uniformly over all data-generating
processes as in (1).

Method of proof: Chernoff’s method or variations thereof (Gaussian
case); Marčenko-Pastur law (non-Gaussian case).
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Selecting the empirically best model

Write m∗ and m̂ for the truly best and the empirically best
candidate model, i.e.,

m∗ = argminMρ2(m) and m̂ = argminMρ̂2(m).

Moreover, write |M| for the number of parameters in the most
complex candidate model.

Corollary

For each fixed sample size n and uniformly over all data-generating
processes as in (1), we have

P

(
log

ρ2(m̂)
ρ2(m∗)

> ε

)
≤ 6 exp

[
log #M− n− |M|

16
ε2

ε + 16

]
,

P

(∣∣∣∣log
ρ̂2(m̂)
ρ2(m̂)

∣∣∣∣ > ε

)
≤ 6 exp

[
log #M− n− |M|

8
ε2

ε + 8

]
,

for each ε > 0.
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Other model selectors

Consider AIC (Akaike, 1969), AICc (Hurvich & Tsai, 1989), FPE
(Akaike, 1970), and BIC (Schwarz, 1978). Taking the exponential
of the objective functions of AIC, AICc and BIC, and using the fact
that GCV(m) = 1

nRSS(m)/(1− |m|/n)2 ≈ ρ(m), we get

AIC(m) =
1
n

RSS(m)e2
|m|
n ≈ ρ(m)e2

|m|
n (1− |m|/n)2

AICc(m) =
1
n

RSS(m)e2
|m|−1

n−|m|−2 ≈ ρ(m)e2
|m|−1

n−|m|−2 (1− |m|/n)2

FPE(m) =
1
n

RSS(m)
1 + |m|/n

1− |m|/n
≈ ρ(m)(1 + |m|/n)(1− |m|/n)

BIC(m) =
1
n

RSS(m)elog(n)
|m|
n ≈ ρ(m)n|m|/n(1− |m|/n)2.
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Simulation Scenario I

Consider one sample of size n = 1300 from (1) with E[xj ] = 0,

E[xixj ] = δi,j , and E[u2] = 1.
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E[xixj ] = δi,j , and E[u2] = 1.
The first 1000 components of θ are shown (in absolute value) below, the
remaining components are zero:
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Simulation Scenario I

Consider one sample of size n = 1300 from (1) with E[xj ] = 0,

E[xixj ] = δi,j , and E[u2] = 1.
The first 1000 components of θ are shown (in absolute value) below, the
remaining components are zero:

The non-zero coefficients of θ are ‘sparse:’ Most are small, but there are
a few groups of adjacent large coefficients.
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Simulation Scenario I

Consider one sample of size n = 1300 from (1) with E[xj ] = 0,

E[xixj ] = δi,j , and E[u2] = 1.
The first 1000 components of θ are shown (in absolute value) below, the
remaining components are zero:

Choose candidate models that can pick-out the few important groups:
Divide the first 1000 coefficients of θ into 20 consecutive blocks of equal
length and consider all candidate models that include or exclude one block
at a time, resulting in 220 candidate models.
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Simulation Scenario I

Consider one sample of size n = 1300 from (1) with E[xj ] = 0,

E[xixj ] = δi,j , and E[u2] = 1.
The first 1000 components of θ are shown (in absolute value) below, the
remaining components are zero:

Model space is searched using a general-to-specific greedy strategy.
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Simulation Scenario I

Results for X Gaussian, u Gaussian:

Run 1:
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Simulation Scenario I

Results for X Gaussian, u Gaussian:

Run 1:
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Simulation Scenario I

Results for X Gaussian, u Gaussian:

Run 2:
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Simulation Scenario I

Results for X Gaussian, u Gaussian:

Run 3:
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Simulation Scenario I

Results for X Gaussian, u Gaussian:

Run 4:
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Simulation Scenario I

Results for X Exponential, u Bernoulli (scaled and centered).

Run 1:
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Simulation Scenario I

Results for X Bernoulli, u Exponential (scaled and centered).

Run 1:
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Simulation Scenario II

Consider the same setting as in Scenario I, but instead of a
parameter θ that is ‘sparse,’ consider a case where none of the
candidate models fits particularly well.

The first 1000 components of θ are shown (in absolute value)
below, the remaining components are zero:
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Simulation Scenario II

Results for X Gaussian, u Gaussian:

Run 1:
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Simulation Scenario II

Results for X Exponential, u Bernoulli (scaled and centered).

Run 1:
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Simulation Scenario II

Results for X Bernoulli, u Exponential (scaled and centered).

Run 1:
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Predictive Inference based on model m

Idea: Estimate the conditional distribution of the prediction error,
i.e., L(m) ≡ N(ν(m), δ2(m)), by

L̂(m) ≡ N(0, δ̂2(m)),

where δ̂2(m) is defined as ρ̂2(m) before.

Theorem

For each fixed sample size n and uniformly over all data-generating
processes as in (1), we have

P

(∣∣∣∣∣∣L̂(m)− L(m)
∣∣∣∣∣∣

TV
>

1√
n

+ ε

)
≤ 7 exp

[
−n− |m|

2
ε2

ε + 2

]
for each ε ≤ log(2) ≈ 0.69.
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Prediction intervals post model selection

Recall that ŷ(f)(m)− y(f) || X, Y ∼ N(ν(m), δ2(m)) ≡ L(m) for
each m ∈M. Based on model m, the ‘prediction interval’

ŷ(f)(m)− ν(m) ± qα/2δ(m)

has coverage probability 1− α conditional on the training sample
X, Y , but is infeasible.

In terms of width of this interval, the ‘best’ model is one that
minimizes δ(m). Set

m◦ = argminMδ2(m).

For fixed m ∈M, a feasible prediction interval is

I(m) : ŷ(f)(m) ± qα/2δ̂(m).
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Prediction intervals post model selection

Recall that ŷ(f)(m)− y(f) || X, Y ∼ N(ν(m), δ2(m)) ≡ L(m) for
each m ∈M. Based on model m, the ‘prediction interval’

ŷ(f)(m)− ν(m) ± qα/2δ(m)

has coverage probability 1− α conditional on the training sample
X, Y , but is infeasible.

In terms of width of this interval, the ‘best’ model is one that
minimizes δ(m). Set

m◦ = argminMδ2(m).

For fixed m ∈M, a feasible prediction interval is

I(m) : ŷ(f)(m) ± qα/2δ̂(m).
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Prediction interval is approx. valid & adaptive

Proposition

For each ε ≤ log 2 and each fixed sample size n, we have∣∣∣∣∣(1− α
)
− P

(
y(f) ∈ I(m̂)

∣∣∣∣∣∣ Y, X
)∣∣∣∣∣ ≤ 1√

n
+ ε

and ∣∣∣∣∣log
δ̂(m̂)
δ(m◦)

∣∣∣∣∣ ≤ ε,

except on an event whose probability is not larger than

11 exp
[
log #M− n− |M|

2
ε2

ε + 2

]
,

uniformly over all data-generating processes as in (1).
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Conclusion

Caution:

The ‘large p / small n’ behavior of model selectors can be
markedly different from their properties for ‘small p / large n’.

Proof of concept: The two goals are achievable

In ‘large p / small n’ settings and under minimal assumptions,
good models can be found, and the resulting prediction intervals
post model selection are approximately valid and adaptive (in finite
samples with high probability uniformly over all data-generating
processes considered).
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The ‘large p / small n’ behavior of model selectors can be
markedly different from their properties for ‘small p / large n’.

Proof of concept: The two goals are achievable
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good models can be found, and the resulting prediction intervals
post model selection are approximately valid and adaptive (in finite
samples with high probability uniformly over all data-generating
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