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Outline
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Introduction to Model Free Variable Selection

Model based variable selection:

• most existing variable selection approaches are model based, i.e., we

assume the underlying true model is known up to a finite

dimensional parameter, or the imposed working model is usefully

close to the true model

Potential limitations:

• the true model is unknown, and model formulation can be complex

• accessing the goodness of model fitting can be difficult when

interweaved with model building and selection
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Introduction to Model Free Variable Selection

Model free variable selection: selection that does not require any

traditional model

A “disclaimer”: model free variable selection in the exploratory stage of

the analysis; refined by model based variable selection approaches

Sufficient dimension reduction: model free variable selection is to be

achieved through the framework of SDR (Li, 1991, 2000, Cook, 1998)
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Introduction to SDR

General framework of SDR:

• study conditional distribution of Y ∈ IRr given X ∈ IRp

• find a p × d matrix η = (η1, . . . , ηd), d ≤ p, such that

Y |X D
= Y |ηTX ⇔ Y X|ηTX

• replace X with ηTX without loss of information on regression Y |X

Key concept: central subspace SY |X

• Y X|ηTX ⇒ SDRS = Span(η) ⇒ SY |X = ∩SDRS

• SY |X is a parsimonious population parameter that captures all

regression information of Y |X; main object of interest in SDR
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Introduction to SDR

Known regression models:

• single / multi-index model: Y = f1(η
T

1X) + . . . + fd(η
T

dX) + ε

• heteroscedastic model: Y = f(ηT

1X) + g(ηT

2X)ε

• logit model: log
(

Pr(Y =1|X)
1−Pr(Y =1|X)

)

= f(ηT

1X) . . .

Existing SDR estimation methods:

• sliced inverse regression (SIR), sliced average variance estimation

(SAVE), principal Hessian directions (PHD), . . .

• inverse regression estimation (IRE), covariance inverse regression

estimation (CIRE), . . .

Dimension Reduction and Variable Selection 6



A Simple Motivating Example

Consider a response model:

Y = exp(−0.5ηT

1X) + 0.5ε

• all predictors X and error ε are independent standard normal

• SY |X = Span(η1), where η1 = (1,−1, 0, . . . , 0)T/
√

2

• CIRE estimate (n = 100, p = 6):

(0.659,−0.734,−0.128, 0.097,−0.015, 0.030)T

Observations:

• produce linear combinations of all the predictors

• interpretation can be difficult; no variable selection

Goal: do variable selection by obtaining sparse SDR estimate
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Key Ideas

Regularized SDR estimation:

• observe that the majority of SDR estimators can be formulated as a

genearlized spectral decomposition problem

• transform the spectral decomposition into an equivalent least

squares formulation

• add L1 penalty to the least squares

Focus of our work:

• demonstrate that the resulting model free variable selection can

achieve the usual selection consistency under the usual conditions as

in the case of model based variable selection (say, e.g., the multiple

linear regression model)

Dimension Reduction and Variable Selection 8



Minimum Discrepancy Approach

Generalized spectral decomposition formulation:

Ωβj = λjΣβj , j = 1, . . . , p

where Ω is a p× p positive semi-definite symmetric matrix, Σ = cov(X).

For instance, Ω
SIR

= cov[E{X − E(X)|Y }], Ω
SAVE

= Σ − cov(X|Y ),

Ω
PHD

= E[{Y − E(Y )}{X − E(X)}{X − E(X)}T]. It satisfies that

Σ−1Span(Ω) ⊆ SY |X

Assumptions:

• above SDR methods impose assumptions on the marginal

distribution of X, instead of the conditional distribution of Y |X

• model free
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Minimum Discrepancy Approach

An equivalent least squares optimization formulation: consider

min
η,γ

L(η, γ) = min
ηp×d,γd×h

h
∑

j=1

(θj − ηγj)
TΣ(θj − ηγj),

subject to ηTΣη = Id, Let (η̃, γ̃) = arg minη,γ L(η, γ). Then η̃ consists

of the first d eigenvectors (β1, . . . , βd) from the eigen decomposition

Ωβj = λjΣβj , j = 1, . . . , p,

where Ω = Σ
(

∑h
j=1 θjθ

T

j

)

Σ.

In matrix form:

L(η, γ) =
{

vec(θ) − vec(ηγ)
}

T

V
{

vec(θ) − vec(ηγ)
}

where V = Ih ⊗ Σ.
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Minimum Discrepancy Approach

A minimum discrepancy formulation:

• start with the construction of a p × h matrix θ = (θ1, . . . , θh), such

that, Span(θ) ⊆ SY |X ; given data, construct a
√

n-consistent

estimator θ̂ of θ

• construct a positive definite matrix V ph×ph, and a
√

n-consistent

estimator V̂ of V

• estimate (η, γ) by minimizing a quadratic discrepancy function:

(η̂, γ̂) = arg min
ηp×d,γd×h

{

vec(θ̂) − vec(ηγ)
}

T

V̂
{

vec(θ̂) − vec(ηγ)
}

• Span{η̂} forms a consistent inverse regression estimator of SY |X

• Cook and Ni (2005)
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Minimum Discrepancy Approach

A whole class of estimators: its individual member is determined by

the choice of the pair (θ, V ) and (θ̂, V̂ ); for instance,

• for sliced inverse regression (SIR):

θs = fsΣ
−1{E(X|Js = 1) − E(X)},

V = diag(f−1
s ) ⊗ Σ

• for covariance inverse regression estimation (CIRE):

θs = Σ−1cov(Y Js, X),

V = Γ−1,

where Γ is the asymptotic covariance of n1/2{vec(θ̂) − vec(θ)}
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Regularized Minimum Discrepancy Approach

Proposed regularization solution:

• let α = (α1, . . . , αp)
T denote a p× 1 shrinkage vector, given (θ̂, η̂, γ̂)

α̂ = arg min
α

{

vec(θ̂) − vec(diag(α)η̂γ̂)
}

T

V̂
{

vec(θ̂) − vec(diag(α)η̂γ̂)
}

,

subject to

p
∑

j=1

|αj | ≤ τ, τ ≥ 0.

• Span{diag(α̂)η̂} is called the shrinkage inverse regression estimator

of SY |X .

• note that:

– when τ ≥ p, α̂j = 1 for all j’s

– when τ decreases, some α̂j ’s are shrunken to zero, which in turn

shrinking the entire rows of η
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Regularized Minimum Discrepancy Approach

Additional notes:

• generalized the shrinkage SIR estimator of Ni, Cook, and Tsai

(2005)

• closely related to nonnegative garrote (Breiman, 1995)

• Pr(α̂j ≥ 0) → 1 for all j’s

• use an information-type criterion to select the tuning parameter τ

• achieve simultaneous dimension reduction and variable selection
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Regularized Minimum Discrepancy Approach

Optimization:

arg min
α

n
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It becomes a “standard” lasso problem, with the “response” Uph, and

the “predictors” W ph×p:

U =
√

nV̂ 1/2vec(θ̂), W =
√

nV̂ 1/2
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The optimization is easy.
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Variable Selection without a Model

Goal: to seek the smallest subset of the predictors XA, with partition

X = (XT

A, XT

Ac)T, such that

Y XAc |XA

Here A denotes a subset of indices of {1, . . . , p} corresponding to the

relevant predictor set XA, and Ac is the compliment of A.

Existence and uniqueness: Given the existence of the central subspace

SY |X , A uniquely exists.

Dimension Reduction and Variable Selection 16



Variable Selection without a Model

Relation between A and basis of SY |X : (Cook, 2004, Proposition 1)

ηp×d =





ηA

ηAc



 , ηA ∈ IR(p−p0 )×d , ηAc ∈ IRp0×d .

The rows of a basis of the central subspace corresponding to XAc , i.e.,

ηAc , are all zero vectors; and all the predictors whose corresponding rows

of the SY |X basis equal zero belong to XAc .
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Variable Selection without a Model

Partition:

θp×h =





θA

θAc



 , θA ∈ IR(p−p0 )×h , θAc ∈ IRp0×h ,

Re-describe A as: A = {j : θjk 6= 0 for some k, 1 ≤ j ≤ p, 1 ≤ k ≤ h}

For the shrinkage inverse regression estimator: define

Â = {j : θ̃jk 6= 0 for some k, 1 ≤ j ≤ p, 1 ≤ k ≤ h}, where

θ̃ = diag(α̂)η̂γ̂
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Asymptotic Properties

Theorem:

1. Assume that the initial estimator satisfies that
√

n
{

vec(θ̂) − vec(θ)
}

→ N(0, Γ), for some Γ > 0, and that

V̂ 1/2 = V 1/2 + o(1/
√

n).

2. Assume that λ → ∞ and λ/
√

n → 0

Then the shrinkage inverse regression estimator satisfies that:

1. Consistency in variable selection: Pr(Â = A) → 1

2. Asymptotic normality:
√

n
{

vec(θ̃A) − vec(θA)
}

→ N(0, Λ), for

some Λ > 0
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A Simulation Study

Motivating example revisited:

• SY |X = Span(η1), where η1 = (0.707,−0.707, 0, . . . , 0)T

• CIRE estimate: (0.659,−0.734,−0.128, 0.097,−0.015, 0.030)T

• Shrinkage CIRE estimate: (0.663,−0.748, 0, 0, 0, 0)T

Another simulation example:

Y = sign(ηT

1X) log(|ηT

2X + 5|) + 0.2ε,

• all predictors X and error ε are independent standard normal

• η1 = (1, . . . , 1q, 0, . . . , 0)T, η2 = (0, . . . , 0, 1, . . . , 1q)
T, q = 1, 5, 10,

SY |X = Span(η1, η2)

• n = 200/400, p = 20
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A Simulation Study

Table 1: Finite sample performance of the shrinkage CIRE estimator.

# actives positive rate vector correlation

true est true false S-CIRE CIRE

q = 1
n = 200 2 3.31 1.000 0.073 0.989 0.879

n = 400 2 2.49 1.000 0.027 0.999 0.951

q = 5
n = 200 10 11.19 0.997 0.122 0.934 0.909

n = 400 10 10.40 1.000 0.040 0.979 0.961

q = 10
n = 200 20 18.91 0.946 − 0.794 0.884

n = 400 20 19.96 0.998 − 0.932 0.953
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A Real Data Analysis

Automobile data:

• response: car price in log scale

• predictors: wheelbase, length, width, height, curb weight, engine

size, bore, stroke, compression ratio, horsepower, peak rpm, city

mpg, highway mpg; p = 13

• n = 195 observations
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Figure 1: Solution paths for the automobile data.
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Discussions

Summary:

• select relevant predictors consistently, without assuming a model

• the basis estimation corresponding to the relevant predictors is√
n-consistent

• apply to a wide class of SDR methods

Reference:

Bondell, H.D., and Li, L. (2008). Shrinkage inverse regression estimation for

model free variable selection. Journal of the Royal Statistical Society, Series

B., accepted.

NSF grant DMS 0706919
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Thank You!
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