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The theme in this talk

( ) (log )
2

rdBGIC l Nθ= −

We propose a Generalized Information Criterion 
for model Selection − the Bayesian-type 
Generalized Information Criterion 

where  
(.)l  is the model log-likelihood function 

d is the number of free parameters in the model
N is the sample size 
0 r< < ∞ . 
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An outline of the talk

• Introduction
• Justifications from the Bayes Factor point of 

view
• The consistency property of BGIC
• Simulation studies
• Outline of the proof of consistency
• Concluding remarks
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Introduction
•Criterion based approach for model selection 
problem remains a popular choice due to the 
simplicity of its applications for the problem

•There have been many criteria proposed in the 
literature such as AIC and BIC

•Most criteria can be written in the form of

( ) 0.5Nl dθ λ−

• There has always been a controversy 
concerning which model criterion should be 
used. This is not a surprise as different criteria 
are derived with different objectives in mind 
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Introduction (continued)
• However, there is a general consent that the 

BIC enjoys the consistency property of 
correctly identifying the true model with 
probability 1 as N → ∞  

• In fact Rao and Wu (1989) showed that its 
generalized version, the Generalized 
Information Criterion (GIC), where λ  satisfies 

1 0N λ− →  and 1(log log )N λ− → ∞  possesses 
the consistency property in linear regression 
models.  

• Such a property is not shared by the AIC or 
any criteria in which λ  is constant (Foster and 
George 1994, Yang 2005, 2007). 



6

Introduction (continued)
• However, it has been found that the BIC often 

is too liberal in selecting a model (underfitting), 
while the AIC on the other hand is too 
conservative (overriding)

• We propose what we call the Bayesian-type 
Generalized Information Criterion

( ) 0.5 (log )rBGIC l d Nθ= −
• When r = log2/loglogN, BGIC becomes AIC. 

When r = 1, BGIC becomes BIC. When r > 1, 
BGIC becomes more aggressive than BIC by 
introducing a heavier penalty 
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Introduction (continued)

• We then use the fivefold cross validation 
technique for choosing r value in the penalty term

• Our simulation studies suggest that our procedure 
performs well

• The consistency property is established in the 
context of the Maximum likelihood Estimation 

• Our consistency results also apply to situations 
where there exist certain types of nonidentifiability
problem such as in mixture models
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Viewpoint of the Bayes factor
Suppose there are finite q  models, defined by im , 

1,...,i q= , whose pdf for observed data Y  is ( ; )if Y θ , 
where iθ  is a vector of unknown model parameters. 
Let ( )imπ  and ( )iπ θ  be priors of im  and iθ . By 
Bayes’ theorem, the posterior probability of im  is 
obtained as, 

1

( ; ) ( )( ; )
( ) ( )

i i
i q

i i
i

P Y m mP m Y
m P m

π

π
=

=

∑
, 

Where ( ; ) ( ; ) ( )i i i iP Y m f Y dθ π θ θ= ∫ . 
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Viewpoint of the Bayes factor (continued)
The ratio of the posterior probabilities of the 
models im  and jm , i j≠ , , {1,..., }i j q∈ , is 

( ; ) ( ; ) ( )
( ; ) ( ; ) ( )

i i i

j j j

P m Y P Y m m
P m Y P Y m m

π
π

= ⋅ , 

where the first ratio of the right hand side is called 
the Bayes Factor (BF), i.e. 

( ; ) ( )( ; )
( ; ) ( ; ) ( )

i i ii
ij

j j j j

f Y dP Y mB
P Y m f Y d

θ π θ θ

θ π θ θ
= = ∫

∫
. 

Commonly, researchers assign ( ) 1/iP m q= , i∀ . 
Then, 

( ; )
( ; )

i
ij

j

P m YB
P m Y

= . 
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Therefore, from the Bayesian point of view one 
chooses model i  over j if 1ijB > ; model j  over i if 

1ijB

Viewpoint of the Bayes factor (continued)

< . Computing BF in  involves evaluation of 
integrals, hence is usually computationally 
demanding. The Laplace approximation to the 
integral ( ; )iP Y m  has been suggested in the 
literature. For the iid sample 1( ,... )NY y y ′= , with the 
density ( ; )n if y θ , 1,...,n N= , the approximation is 

1
12 2

2( ; ) ( ) ( ) ( ) ( )[1 ( )]
id

i i i iP Y m L O N
N
π θ θ π θ −= Σ + , 

where 
1

( ) ( ; )N
i n in

L f yθ θ
=

= ∏  and 
2 1( ) [ log ( ; ) /( )]i i i if yθ θ θ θ −′Σ = −∂ ∂ ∂ . 
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Viewpoint of the Bayes factor (continued)
The BIC can be viewed as taking logarithm of the 
leading terms as 

( ) log
2

i
i N i

dBIC l Nθ= − , 

where 
1

( ) log ( ; )N
N i n in

l f yθ θ
=

= ∑ . The BIC approximation 

is accurate to the order of 1( )O N − . If one wishes to take 
into account the higher order terms, one might consider 
using (log )rN  to replace log N  in the BIC 
approximation. It therefore leads our BGIC, 

( ) (log )
2

ri
i i

dBGIC l Nθ= − . 

The restriction 0 r< < ∞  is for the consistency property. 
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The following example from the literature demonstrates 
that an exact posterior probability function can be 
expressed by the BGIC.  
Example: (Kass and Wasserman 1995) 

Let ~ ( ,1)ny N

An example

ψ  and consider the normal unit-information 
prior ~ (0,1)Nψ , then the exact posterior density function 
is 

2

0
1log ( ; ) log( 1)

2 1 2
Ny NP y m l N

N
= + − +

+
, 

where  
2

1
0

2log
2 2

N
nn

N yNl
N
π == − − ∑ , 

and 
1

/N
nn

y y N
=

= ∑ .  
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An example (continued)

However, the BGIC is obtained as  
2

0
1 (log )

2 2
rNyBGIC l N= + − , 

which suggests  

( ) ( )
2

log log 1
1

r NyN N
N

= + +
+

. 

Therefore, in this case, there exists 1r >  for 3N ≥ . 
To show this, let  

( ) ( )
2

( ) log log 1
1

r Nyr N N
N

Δ = − − +
+

, 

it is obvious that ( )rΔ  is monotonically increasing 
function in r  and (1) 0Δ <  and ( )Δ ∞ = ∞  for 3N ≥ . 
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Consistency
Let the true distribution function be ( )G y  and density 
function be ( )g y . Suppose there are a finite set of kq  
true models among candidate models, 

{ 1,..., }g k kM m k q= , = , with the density function 
( ; )k kg y θ . Suppose that there are a finite set of kq  

non-true models among candidate models, 
{ , 1,..., }f k kM m k q=  = , with the density functions 

( ; )k kf y θ . Let id
i i Rθ ∈Θ ⊂ . Denote the expectation 

and empirical measure of, say f , as Gf fdG= ∫  and 
1

1
( )N

N nn
G f N f y−

=
= ∑ , respectively.  
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Regularity conditions
Assume that kg  and kf  are σ − finite measurable 

probability density functions with the regularity 
conditions stated below.  
(C1) iΘ , i∀ , are compact. 

(C2) kg  and kf  are dominated for k∀  and k∀ , i.e. 

1( )kg b y≤  and 2 ( )kf b y≤ , where 1( )b y  and 2 ( )b y are 
continuous on y  and integrable with respect to G . 
(C3) kg  and kf , k∀ , k∀ , are almost surely 
continuous on kY θ× , and kY θ× , respectively. 

Remarks: The compactness condition (C1) may 
involve other restrictive conditions for models such as 
mixture normal models (see e.g. Hathaway 1985).  
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Conditions for the penalty

Rewrite the model selection criterion as 
,( )

iN i d Nl pθ − , where ,id Np  represents the penalty term, 
is maximized . The following conditions are assumed 
for ,id Np . 

(P1) 
1 2, ,i id N d Np p< , N∀  if 

1 2i id d< . 

(P2) , . . 0id N a sp
N

⎯⎯→ . 

(P3) , . .

log log
id N a sp

N
⎯⎯→∞ . 
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Consistency results
Theorem 1. Under (C1) – (C3) and (P1) – (P3), 

(i) If the set of candidate models is f kM m∪  (i.e. km  is the 
only true model; g kM m=  and 1kq = ), then ˆPr( ) 1i km m= =  
a.s., 1,..., 1ki q= + . 

(ii) If the set of candidate models is fM  (i.e. it does not 
include a true model), then *ˆPr( ) 1im m= =  a.s., 1,..., ki q= , 

where *m  is the model whose density function *f  is closest 
to g  in the Kullback-Leibler (KL) measure among the models 
in fM . 

(iii) If the set of candidate models is f gM M∪  with 
{ , 1}g k kM m q= >  (i.e. it contains more than one true model), 

then *ˆPr( ) 1i km m= =  a.s., 1,..., kki q q= + , where *
km  is the true 

model with the smallest dimension *
kd  among the models in 

gM . 



18

Remarks for the consistency results
1. There is common belief that the consistency of BIC 

relies on the true model being included in the candidate 
models (e.g. Haughton 1988, Shao 1997). Our results in
(ii) do not require such assumption. 

2. The results in (i) and (ii) hold regardless of size of 
model dimension, d, which implies the results hold even 
when the true model in (i) or the closest model in (ii) 
have a large model dimensionality. 

3. ( / log )O N Nλ =  suggested by Rao and Tibshirani 
(1997) satisfies all conditions P(1)-P(3). But as 
(log ) /( / log ) 0rN N N →  as N → ∞ , it leads to a more 
aggressive criterion than our BGIC for all 0r > .  
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Suppose that one wish to compare two models and 
1 2

ˆ ˆ( ) ( )N i N il f l f> , 
3N ≥  for two models 

1i
m  and 

2i
m . Model 

1i
m  is preferred over 

2i
m  

for  

Reporting the range of  values

1 2 1 2

ˆ ˆlog 2[ ( ) ( )] log( )
0

log log
N i N i i il f l f d d

r
N

> − −
< <  

if i jd d> ; for 0 r< < ∞  if i jd d< . 
• One immediately knows whether the preference is 

suggested by AIC not BIC if 0 1r< < , or both AIC and BIC if 
1r ≥ .  

• Reporting r range provides evidence of model fit in terms of 
how much penalty a preferred model can afford to.  

• It suggests to what extent the choice of a model is made by 
looking at how close the upper bound r  is away from 
log 2 / log log N  (AIC) and 1 (BIC). 
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Model search: linear regression

If the primary goal to select a model among a number of 
candidate models, one could use the cross-validation 
(CV) technique to estimate r. For variable selection in 
linear regression models, we adopt the fivefold CV 
procedure as follows (Breiman 1995). Denote the 
training and test set as vN N−  and vN , respectively, for 

1,...,5v = . For each r and v, we find all sub set estimator 
( )ˆ ( )v rβ  according to a criterion based on the training set 

vN N− . Define the CV criterion as  
5

( ) 2

1 ( , )

ˆ( ) { ( )}
v v

v
n nv v

v
n n

v y x N

CV r y x rβ
= ∈

′= −∑ ∑ . 

We find an r̂  that minimizes ( )CV r . 
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Model search: mixture models

In the context of order selection in mixture models, in 
stead of finding r that minimizes the prediction error 
we suggest to find r that maximizes the prediction 
likelihood, i.e., 

5
( )

1 ( , )

ˆ( ) log ( ; , ( ))
v v

v
n nv v

v
K n n

v y x N

CV r f y x rθ
= ∈

= ∑ ∑ , 

where (.)Kf  is K-component mixture density 

function.  
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Simulation studies: Linear regression

Example : Linear regression. Consider the model, 
n n ny β σε′= +x , 

where 1( ,..., )n n nDx x ′=x  and { }nε  are independent and 
identically distributed as (0,1)N . 
Our first simulation design follows that of Gunst and 
Mason (1980), Shao (1993, 1997, JASA). 5D = , 40N = , 

1 1nx = , n∀  and observations of four covariates are taken 
from an example in Gunst and Mason (1980), which was 
reproduced in Table 1 of Shao (1993). 
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Table 1. Simulation Results for the Linear Regression Model based on the First Simulation Design 

True Model Method Avg. No. of 0 Coefs CM(%) MRME(%)
Correct Incorrect 

(2,0,0, 4,0)β ′=  AIC 2.435 0 55.4 75.97 
 BIC 2.779 0 80.3 55.43 
 RTC 2.998 0 99.8 36.84 
 BGIC ( ˆ 2.15r = ) 3 0 100 36.69 

(2,0,0, 4,8)β ′=  AIC 1.611 0 66.0 86.25 
 BIC 1.846 0 85.8 73.51 
 RTC 1.999 0 99.9 64.24 
 BGIC ( ˆ 1.79r = ) 1.999 0 99.9 64.24 

(2,9,0, 4,8)β ′=  AIC 0.817 0 81.7 95.24 
 BIC 0.939 0 93.9 91.29 
 RTC 0.996 0.014 98.4 88.43 
 BGIC ( ˆ 1.01r = ) 0.94 0 94.0 91.21 

(2,9, 6, 4,8)β ′=  AIC 0 0 100 100 
 BIC 0 0 100 100 
 RTC 0 0.051 94.9 100 
 BGIC ( ˆ 1.01r = ) 0 0 100 100 

(1, 2,3, 2,3)β ′=  AIC 0 0.615 39.1 100 
 BIC 0 0.833 19.5 118.99 
 RTC 0 1.488 0.0 229.11 
 BGIC ( ˆ 0.76r = ) 0 0.707 30.6 110.96 

Correct: the average number of times, in which irrelevant covariates are correctly excluded from the model. 
Incorrect: the average number of times, in which relevant covariates are incorrectly excluded from the model. 
CM: select the correct model. 
MRME: the median of relative model errors defined as the ratio of the model errors of the selected model over 
that of the full model, which includes all covariates 
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Simulation studies: Linear regression

Example : Linear regression (continued).  

The second simulation design follows that of Tibshirani 
(1996) and Fan and Li (2001). In this design, there is no 
intercept in the model. The values of eight covariates (

8D = ) are generated from the multivariate normal 
distribution with each covariate following (0,1)N  and the 
correlation between covariates ax  and bx  is | |0.5 a b− , 

, { }a b q∈ . The true coefficient is (3,1.5,0,0, 2,0,0,0)β ′= . 



Table 2. Simulation Results for the Linear Regression Model based on the 
Second Simulation Design 

Avg. No. of 0 Coefs Method 
Correct Incorrect 

CM(%) MRME(%)

 N = 40, σ = 3 
AIC 3.923 0.264 30.2 82.94 
BIC 4.499 0.399 46.2 73.74 
RTC 4.906 1.207 11.3 171.84 

BGIC ( ˆ 0.85r = ) 4.366 0.339 44.3 74.59 
 N = 40, σ = 1 

AIC 3.987 0 36.9 77.16 
BIC 4.589 0 67.8 55.33 
RTC 4.993 0.001 99.3 34.16 

BGIC ( ˆ 1.57r = ) 4.955 0 95.6 36.55 
 N = 60, σ = 1 

AIC 4.075 0 39.3 75.42 
BIC 4.755 0 78.5 48.36 
RTC 4.999 0 99.9 36.22 

BGIC ( ˆ 1.57r = ) 4.985 0 98.5 36.99 
 N = 100, σ = 1 

AIC 4.128 0 40.7 73.75 
BIC 4.829 0 84.4 45.24 
RTC 5 0 100 35.67 

BGIC ( ˆ 1.57r = ) 4.992 0 99.2 36.36 
 N = 200, σ = 1 

AIC 4.161 0 41 74.08 
BIC 4.882 0 88.8 42.56 
RTC 5 0 100 35.39 

BGIC ( ˆ 1.57r = ) 5 0 100 35.39 
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Simulation studies: Linear regression

Example : Linear regression (continued).  

The third simulation design is to study the performance of 
the criteria when there is non true model presented among 
candidate models. We particularly consider the polynomial 
approximation to a nonlinear function (Shao 1997, Statistica 
Sinica). The values of y are generated according to 

exp( )n n ny x ε= + . where nx  are sampled from (0,1)N . We 
select a model from the class of linear models with 

1(1, ,..., )h
n n nx x − ′=x , 5h = . 
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Table 3. Probability of Selecting Polynomial Functions for 
Approximating an Exponential Function by Different Criteria 

 ĥ  
 2 3 4 5 
 N = 40 

AIC 0 0 0.436 0.564 
BIC 0 0.003 0.604 0.393 
RTC 0 0.12 0.829 0.051 

BGIC ( ˆ 0.01λ = ) 0 0 0.271 0.729 
 N = 60 

AIC 0 0 0.089 0.911 
BIC 0 0 0.225 0.775 
RTC 0 0 0.842 0.158 

BGIC ( ˆ 0.01λ = ) 0 0 0.032 0.968 
 N = 100 

AIC 0 0 0.035 0.965 
BIC 0 0 0.141 0.859 
RTC 0 0 0.949 0.051 

BGIC ( ˆ 0.01λ = ) 0 0 0.015 0.985 
 N = 200 

AIC 0 0 0.002 0.998 
BIC 0 0 0.021 0.979 
RTC 0 0 0.985 0.015 

BGIC ( ˆ 0.01λ = ) 0 0 0.002 0.998 
 N = 300 

AIC 0 0 0 1 
BIC 0 0 0.001 0.999 
RTC 0 0 0.933 0.067 

BGIC ( ˆ 0.01λ = ) 0 0 0 1 
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Simulation studies: Mixture models

Example (Mixture normal linear regression). Consider the 
finite K-component mixture model 

2
1

~ ( ; , )K
n i i n n i ii

y yα φ β σ
=

′∑ x , where (.)iφ  is the normal 

density function and the probability 0iα ≥ , 1,...,i K=  

and 
1

1K
ii

α
=

=∑ .  

The first simulation design: K = 2, and  
1 11n n ny x e= + + , with probability 0.5, 

2 22n n ny x e= − + , with probability 0.5, 
where 1 2,  ~ . . (0,1)n ne e i i dN .  



Biernacki and Govaert (1997), 

1 1
ˆ ˆ ˆCLC ( ) ln( )K N

N kn knk n
l θ τ τ

= =
= + ∑ ∑ ,  

Biernacki, Celeux and Govaert (2000) 

ICL CLC 0.5 lnq N= − ,  

Naik, Shi and Tsai (2007). 

2

1 1

1

ˆ ˆ ˆ( )ˆMRC ln( / 3)
ˆ ˆ 2

ˆˆ                                        2 ln( )

K K
k k k

k
k k k k

K

k k
k

m m pm
m p

m

π

α

= =

=

+
= +

− −

−

∑ ∑

∑
 

Other Criteria studied



Table 4. Probability of Selecting number of mixture components 

 K̂  
 1 2 3 4 
 N = 40 

AIC 0 0.25 0.45 0.3 
BIC 0 0.7 0.2 0.1 
CLC 0 0.1 0.25 0.65 

ICL-BIC 0 0.6 0.3 0.1 
MRC 0 0.25 0.2 0.55 
RTC 0 0.9 0.1 0 

BGIC ( ˆ 1.3λ = ) 0 0.85 0.15 0 
 



Outline of the proof of consistency
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Lemma 1. If the conditions (C1) - (C3) are satisfied, then 
. .ˆlog ( ) loga s

N k kG g G gθ ⎯⎯→ , k∀ , and 
. .

0
ˆlog ( ) log ( )a s

N k k k kG f G fθ θ⎯⎯→ , k∀ , where 0kθ  is the maximum 
of 0log ( )k kG f θ . 

Remars: we paprticularly show based on Feng and McCulloch’s 
(1996) idea that the results apply even when ther exists the 
nonidentifiability problem, For example, suppose the true model is 

~ (0,1)y N . If a candidate model is 2~ ( , )y N μ σ , then there is an 
unique parameter point 2( , ) (0,1)μ σ =  such that the candidate model 
becomes the true model. But if a candidate model is a two-component 
mixture  

2
1 1

2
2 2

~ ( , ) with the probability ,   
~ ( , )   with the probability 1- ,

y N
y N

μ σ α
μ σ α

⎧
⎨
⎩

 

then the true model can be recovered with 1α = , 2
1 1( , ) (0,1)μ σ = , or 

0α = , 2
2 2( , ) (0,1)μ σ = , or 1 2μ μ= , 2 2

1 2σ σ= . 
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Proof of Theorem 1. 
 Define the KL measure (Kullback and Leibler 1951) as 

( , ) log gK g f dG
f

= ∫  

The non-negativity property of the KL measure gives 
( , ) 0K g f >  if f g≠  and ( , ) 0K g f =  if f g= .. 
Because  

 

, ,

,,

.

1 ˆ ˆ  { ( ( )) [ ( ( )) ]}

1 ˆ ˆ{ ( ( )) ( ( ))}

( , ) 0,

k k

k k

N k d N N d Nk k

d Nd N
N k N k k

a s
k

l g p l f p
N

pp
l g l f

N N N
K g f

θ θ

θ θ

− − −

= − − +

⎯⎯→ >

Therefore, for 1k = , fkm M∈ , k∀ , 

, ,
ˆ ˆPr( ( ( )) ( ( )) ) 1

k kN k d N N d Nk kl g p l f pθ θ− > − =  a.s. 
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Proof of Theorem 1 (continued) 
(ii) Define  

1 2 1 2

2 1

( , ) ( , ) ( , )

                log ( ) log ( ).

k k k k

k k

D f f K g f K g f

f dG y f dG y

= −

= −∫ ∫
 

Because ( , ) 0K g f > , if f g≠ , we have 
1 2

( , ) 0k kD f f < , if 
1kf  is 

closer than 
2kf  to g; 

1 2
( , ) 0k kD f f > , otherwise. 

By the strong ULLN, 
* *

. *( ( )) ( ( ))
( , ) 0N N a sk k

k

l f l f
D f f

N
θ θ−

⎯⎯→ >  

where *f  is closest to g  among all non the true candidate models 
in fM .  
Therefore, we have  

*
.* * *

,,

1 ˆ ˆ{ ( ( )) [ ( ( )) ]} ( , ) 0
k

a s
N N d Nk k kd N

l f P l f P D f f
N

θ θ− − − ⎯⎯→ > ,

i.e.,  
*

* *
,,

ˆ ˆPr( ( ( )) ( ( )) ) 1
kN N d Nk kd N

l f p l f pθ θ− > − =  a.s. 
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Proof of Theorem 1 (continued) 
(iii) The proof is more involved. The key results are that, for any two 
models 

1 2
, ,k k gm m M∈  with 

1 2k kd d< . Consider 

1 2 1

1 21 2

2 2

,
, ,

, ,

ˆ ˆ( ) ( )
ˆ ˆPr( ( ) ( ) ) Pr( 1)k

k k

k k

d Nk k
N k d N N k d N

d N d N

pl g l g
l g p l g p

p p
−

− > − = > − . 

Because 
1 2 2

. .
,ˆ ˆ{ ( ) ( )}/ 0

k

a s
N k N k d Nl g l g p− ⎯⎯→ . By condition (P1), 

1 2k kd d<  results in 
1 2, ,/ 1 0

k kd N d Np p − < . Therefore, 

1 21 2, ,ˆ ˆPr( ( ) ( ) ) 0
k kk d N k d Nl g p l g p− > − =  a.s. 

for all 
1 2
,k k gm m M∈  with 

1 2k kd d> . This implies, 

*
*

,,
ˆ ˆPr( ( ) ( ) ) 1

kk
k k d Nd N

l g p l g p− > − =  a.s. 

for any k gm M∈  with *
k kd d> . 



Concluding remarks
• we propose a particular form of the Generalized 

Information Criterion
• The consistency property of our criterion is studied 
• The cross validation technique is suggested for 

estimating the penalty parameter
• Simulation studies suggest our proposed procedure 

works well, particularly in small sample size
• Our findings also provide some insight on understanding 

why the well known criteria such as AIC and BIC can fail 
to perform

• The drawback of our method is intensity of computation 
inherited from the cross validation technique

• Future studies are needed
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