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Binary classification

(X, Y) ∈ Rd × {−1, 1} observation/label pair

gn(X) = gn(X, Dn) ∈ {0, 1} classifier, based on

Dn = (X1, Y1), . . . , (Xn, Yn), i.i.d. training data, distributed as
(X, Y).

L(gn) = P {gn(X) 6= Y|Dn} loss of gn.

a posteriori probability η(x) = P{Y = 1|X = x} .

Bayes classifier: g∗(x) = 1η(x)≥1/2.

Bayes risk: L∗ = L(g∗).

{gn} is consistent if L(gn) → L∗ in probability.



Local averaging

Historically the first non-parametric classification rules.

Histogram, k-nearest neighbor, kernel classifiers.

Fix and Hodges (1951-52),
Cover and Hart (1967),
Glick (1973),
Devroye and Wagner (1976),
Stone (1977),
Gordon and Olshen (1978),
Devroye and Györfi (1983).



Stone’s 1977 theorem

Local averaging classifiers:

gn(x) = 1 iff
n∑

i=1

YiWni(x) ≥ 0

where Wni(x) = Wni(x, X1, . . . , Xn) ≥ 0

and
∑n

i=1 Wni(x) = 1.



Stone’s 1977 theorem

Consistency holds if

(i) limn→∞ E
{
max1≤i≤n Wni(X)

}
= 0.

(ii) For all a > 0,

lim
n→∞

E

{
n∑

i=1

Wni(X)1‖Xi−X‖>a

}
= 0.

(iii) There is a c > 0 such that, for every
f ≥ 0,

E

{
n∑

i=1

Wni(X)f(Xi)

}
≤ cEf(X).



Tree classifiers

Histograms based on data-dependent partitions.

Partition is constructed by recursive splitting.

See Breiman, Freedman, Olshen, and Stone (1984), Devroye,
Györfi, and Lugosi (1996) for surveys.



Consistency of tree classifiers

Many versions suggested in the literature are inconsistent.

General consistency theorems:

Assume the partition depends on X1, . . . , Xn only. Let A(X)
denote the cell containing X and N(X) =

∑n
i=1 1Xi∈A(X).

If diam(A(X)) → 0 and N(X) → ∞ in probability then the
classifier is consistent (Devroye, Györfi, and Lugosi, 1996).

For general partitions consistency holds under an additional
combinatorial condition (Lugosi and Nobel, 1993).



Random forests

Tree classifiers are unstable.

Breiman (2001) suggests “bootstrap” randomization in building
trees:

(1) choose a cell at random
(2) choose m < d coordinates at random
(3) cut at a point (and direction) giving the largest decrease in
empirical error.

Repeat until every cell is pure.

Repeat the random tree classifier a zillion times and take majority
vote.

Additional randomization is achieved by bootstrap sampling.



Simpler version

Breiman asked if this classifier was consistent. Performs well in
practice.

Simpler version:

(1) choose a cell at random
(2) choose a coordinate at random
(3) cut at a random point.

Repeat k times.

Repeat the random tree classifier a zillion times and take majority
vote.

Local averaging rule with weights
Wni(X) ∼ PZ{X, Xi are in same cell}.



Averaged classifiers

Let gn(X, Z, Dn) = gn(X, Z) be a randomized classifier.

Probability of error:

L(gn) = P(X,Y),Z{gn(X, Z, Dn) 6= Y} .

Averaged classifier: gn(x) = 1EZgn(x,Z)≥1/2

Main lemma:

If gn is consistent then gn is also consistent.

Averaging “stabilizes.”



Consistency of simple version

We obtain consistency without computing the weights Wni(X).

Assume X is supported in [0, 1]d.

Then gn is consistent whenever k → ∞ and k/n → 0 as
k → ∞.

It suffices to prove consistency of the randomized “base” classifier.

It is enough to show diam(A(X, Z)) → 0 and N(X, Z) → ∞ in
probability.



Consistency of simple version

N(X, Z) → ∞ and diam(A(X, Z)) → 0, in probability, are both
easy to show.

Interestingly, for d > 1, supx diam(A(x, Z)) 6→ 0.

If d ≥ 3, the number of cells with diameter 1 (in sup norm) is a
supercritical branching process.



A scale invariant version

(1) choose a cell at random
(2) choose a coordinate at random
(3) cut at a random data point.

Repeat k times.

Repeat the random tree classifier a zillion times and take majority
vote.

If the distribution of X has non-atomic marginals in Rd, then gn is
consistent whenever k → ∞ and k/n → 0 as k → ∞.



Breiman’s original random forest

Lin and Jeon (2006) point out that any random forest classifier
that cuts down to pure cells is a weighted layered nearest neighbor
rule.

No such rule can be consistent if the distribution of X is
concentrated on a diagonal.



Randomizing inconsistent classifiers

Averaging consistent randomized classifiers preserves consistency.

The converse is not true: averaging inconsistent classifiers may
lead to consistency.

This may be the case with Breiman’s original random forest if X
has a density.

We work out a stylized example.



A randomized nearest neighbor rule

For x ∈ R, let X(1)(x), X(2)(x), . . . , X(n)(x) be X1, . . . , Xn

ordered according to distances to x.

Let U1, . . . , Un be i.i.d. uniform [0, m].

Let gn(x, Z) = Y(i)(x) if and only if

max(i, Ui) ≤ max(j, Uj) for j = 1, . . . , n

X(i)(x) is the perturbed nearest neighbor of x.

gn(x) = 1EZgn(x,Z)≥1/2 is the averaged perturbed nearest neighbor
classifier.



Consistency

The averaged perturbed nearest neighbor classifier is consistent if
m → ∞ and m/n → 0.

Proof: gn is a local averaging classifier with

Wni(x) = PZ{X(i)(x) is the perturbed nearest neighbor of x}
= · · · can be written explicitly

Stone’s theorem may be used.



Bagging

In bagging, suggested by Breiman (1996), bootstrap samples are
generated from the original data set.

Let qn ∈ [0, 1]. In a bootstrap sample Dn(Z) each (Xi, Yi) is
present with probability qn.

Given a classifiers {gn}, let

gn(X, Z, Dn) = gN(X, Dn(Z)) ,

By drawing many bootstrap samples, one obtains the averaged
classifier gn(x, Dn) = 1EZgN(x,Dn(Z))≥1/2.

If nqn → ∞ as n → ∞ then the bagging classifier is consistent.



Bagging the 1-NN classifier

It may help to choose much smaller values of qn.

The 1-nearest neighbor rule is not consistent unless either L∗ = 0
or L∗ = 1/2.

However, the bagging averaged 1-nearest neighbor classifier is
consistent for all distributions of (X, Y) if and only if qn → 0 and
nqn → ∞.



Greedy trees

Greedy trees like Breiman’s may be inconsistent for another reason:



Questions

Is Breiman’s original random forest consistent if X has a density?

In what situations does randomizing and averaging help?



Random forests


