Introduction	CCA 0000	Lasso oooooo	Sparse CCA oooooo	Summary

Sparse CCA using Lasso

Anastasia Lykou & Joe Whittaker

Department of Mathematics and Statistics, Lancaster University

July 23, 2008

Introduction	CCA 0000	Lasso 000000	Sparse CCA	Summary
Outline				

Motivation

2 CCA

- Definition
- CCA as least squares problem
- 3 Lasso
 - Definition
 - Lasso algorithms
 - The Lasso algorithms contrasted
- 4 Sparse CCA
 - SCCA
 - Algorithm for SCCA
 - Example

5 Summary

Introduction	CCA 0000	Lasso 000000	Sparse CCA	Summary
Motivation				

• SCCA

improve the interpretation of CCA

sparse principal component analysis (SCoTLASS by Jolliffe et al. (2003) and SPCA by Zou et al. (2004))

interesting data sets (market basket analysis)

Sparsity

shrinkage and model selection simultaneously (may reduce the prediction error, can be extended to high-dimensional data sets)

Canonical Correlation Analysis				
Definition				
Introduction	CCA ●○○○	Lasso oooooo	Sparse CCA	Summary

- seek linear combinations S = α^TX and T = β^TY such that ρ = max_{α,β} corr(S, T)
- *S*, *T* are the canonical variates
- α, β are called conical loadings
- Standard solution through eigen decomposition.

1st dimension				
CCA as least squares problem				
Introduction	CCA ○●○○	Lasso 000000	Sparse CCA 000000	Summary

Theorem1

Let α , β be p, q dimensional vectors, respectively.

$$(\widehat{\alpha}, \widehat{\beta}) = \operatorname{argmin}_{\alpha, \beta} \left\{ \operatorname{var}(\alpha^T \mathbf{X} - \beta^T \mathbf{Y}) \right\},$$

subject to $\alpha^T \operatorname{var}(\mathbf{X}) \alpha = \beta^T \operatorname{var}(\mathbf{Y}) \beta = 1.$

Then $\widehat{\alpha},\widehat{\beta}$ are proportional to the first dimensional ordinary canonical loadings.

2nd dimension				
CCA as least squares problem				
Introduction	CCA oooo	Lasso 000000	Sparse CCA oooooo	Summary

Theorem2

Let α , β be p, q dimensional vectors.

$$\begin{aligned} &(\widehat{\alpha},\widehat{\beta}) = \operatorname{argmin}_{\alpha,\beta} \left\{ \operatorname{var}(\alpha^{T} \mathbf{X} - \beta^{T} \mathbf{Y}) \right\}, \\ &\text{st} \quad \alpha^{T} \operatorname{var}(\mathbf{X}) \alpha = \beta^{T} \operatorname{var}(\mathbf{Y}) \beta = 1 \quad \text{and} \\ &\alpha_{1}^{T} \operatorname{var}(\mathbf{X}) \alpha = \beta_{1}^{T} \operatorname{var}(\mathbf{Y}) \beta = 0 \end{aligned}$$

where α_1, β_1 are the first canonical loadings. Then, $\hat{\alpha}, \hat{\beta}$ are proportional to the second dimensional ordinary canonical loadings.

The theorems establish an Alternating Least Squares algorithm for CCA.

2nd dimension				
CCA as least squares problem				
Introduction	CCA oooo	Lasso 000000	Sparse CCA oooooo	Summary

Theorem2

Let α , β be p, q dimensional vectors.

$$\begin{aligned} &(\widehat{\alpha},\widehat{\beta}) = \operatorname{argmin}_{\alpha,\beta} \left\{ \operatorname{var}(\alpha^{T} \mathbf{X} - \beta^{T} \mathbf{Y}) \right\}, \\ &\text{st} \quad \alpha^{T} \operatorname{var}(\mathbf{X}) \alpha = \beta^{T} \operatorname{var}(\mathbf{Y}) \beta = 1 \quad \text{and} \\ & \alpha_{1}^{T} \operatorname{var}(\mathbf{X}) \alpha = \beta_{1}^{T} \operatorname{var}(\mathbf{Y}) \beta = 0 \end{aligned}$$

where α_1, β_1 are the first canonical loadings. Then, $\hat{\alpha}, \hat{\beta}$ are proportional to the second dimensional ordinary canonical loadings.

The theorems establish an Alternating Least Squares algorithm for CCA.

Let the objective function be

$$Q(\alpha,\beta) = \operatorname{var}(\alpha^T \boldsymbol{X} - \beta^T \boldsymbol{Y})$$
subject to $\alpha^T \operatorname{var}(\boldsymbol{X})\alpha = \beta^T \operatorname{var}(\boldsymbol{Y})\beta = 1.$

Q is continuous with closed and bounded domain $\Rightarrow Q$ attains its infimum

ALS algorithm

- Given $\widehat{\alpha}$
- $\widehat{\beta} = \arg \min_{\beta} Q(\widehat{\alpha}, \beta)$ subject to $\operatorname{var}(\beta^T \mathbf{Y}) = 1$)
- Given $\hat{\beta}$
- $\hat{\alpha} = \arg \min_{\alpha} Q(\alpha, \hat{\beta})$ subject to $\operatorname{var}(\alpha^T \mathbf{X}) = 1$)

Q decreases over the iterations and is bounded from below \Rightarrow Q converges.

Let the objective function be

$$Q(\alpha,\beta) = \operatorname{var}(\alpha^T \boldsymbol{X} - \beta^T \boldsymbol{Y})$$
subject to $\alpha^T \operatorname{var}(\boldsymbol{X})\alpha = \beta^T \operatorname{var}(\boldsymbol{Y})\beta = 1.$

Q is continuous with closed and bounded domain $\Rightarrow Q$ attains its infimum

ALS algorithm

- Given $\widehat{\alpha}$
- $\widehat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} Q(\widehat{\boldsymbol{\alpha}}, \boldsymbol{\beta})$ subject to $\operatorname{var}(\boldsymbol{\beta}^T \boldsymbol{Y}) = 1$)
- Given $\hat{\beta}$
- $\hat{\alpha} = \arg \min_{\alpha} Q(\alpha, \hat{\beta})$ subject to $\operatorname{var}(\alpha^T \mathbf{X}) = 1$)

Q decreases over the iterations and is bounded from below \Rightarrow Q converges.

Let the objective function be

$$Q(\alpha, \beta) = \operatorname{var}(\alpha^T \mathbf{X} - \beta^T \mathbf{Y})$$
subject to $\alpha^T \operatorname{var}(\mathbf{X})\alpha = \beta^T \operatorname{var}(\mathbf{Y})\beta = 1$.

Q is continuous with closed and bounded domain $\Rightarrow Q$ attains its infimum

ALS algorithm

- Given \widehat{lpha}
- $\widehat{\boldsymbol{\beta}} = \arg \min_{\boldsymbol{\beta}} Q(\widehat{\boldsymbol{\alpha}}, \boldsymbol{\beta})$ subject to $\operatorname{var}(\boldsymbol{\beta}^T \boldsymbol{Y}) = 1$)
- Given $\widehat{oldsymbol{eta}}$

•
$$\widehat{\alpha} = \arg \min_{\alpha} Q(\alpha, \widehat{\beta})$$
 subject to $\operatorname{var}(\alpha^T X) = 1$)

Q decreases over the iterations and is bounded from below \Rightarrow *Q* converges.

Lasso (least al	osolute shi	rinkage and sel	ection operator)	
Definition				
Introduction	CCA 0000	Lasso ●○○○○○	Sparse CCA	Summary

• Introduced by Tibshirani (1996)

• Imposes the L₁ norm on the linear regression coefficients.

Lasso

$$\widehat{oldsymbol{eta}}_{lasso} = argmin_{oldsymbol{eta}} \left\{ var(\mathbf{Y} - oldsymbol{eta}^{\mathsf{T}} oldsymbol{X})
ight\}$$

subject to
$$\sum_{j=1}^{p} |\beta_j| \leq t$$

• The *L*₁ norm properties shrink the coefficients towards zero and exactly to zero if *t* is small enough.

Lasso algorit	hms availab	le in the literati	ure	
Lasso algorithms				
Introduction	CCA 0000	Lasso oeoooo	Sparse CCA 000000	Summary

• Lasso by Tibshirani

Expresses the problem as a least squares problem with 2^{p} inequality constraints

Adapts the NNLS algorithm

• Lars-Lasso

A modified version of Lars algorithm introduced by Efron et al. (2004)

Lasso estimates are calculated such that the angle between the active covariates and the residuals is always equal.

Lasso with positivity constraints

Suppose that the sign of the coefficients does not change during shrinkage of the coefficients

Positivity Lasso

$$\widehat{oldsymbol{eta}}_{\textit{lasso}} = \textit{argmin}_{oldsymbol{eta}} \left\{ ext{var}(oldsymbol{Y} - oldsymbol{eta}^{ op}oldsymbol{X})
ight\}$$

subject to $s_0^t \beta \leq t$ and $s_{0j}\beta_j \geq 0$ for $i = 1 \dots, p$

where s_0 is the sign of the OLS estimate.

- simple algorithm, but quite general
- restricted version of Lasso algorithms, since the sign of the coefficients cannot change
- up to p + 1 constraints imposed, << 2^p constraints of Tibshirani's Lasso

The solution is given through quadratic programming methods,

Positivity Lasso solution

$$\widehat{\boldsymbol{\beta}} = \boldsymbol{b}_0 - \lambda \operatorname{var}(\boldsymbol{X})^{-1} \boldsymbol{s}_0 + \operatorname{var}(\boldsymbol{X})^{-1} \operatorname{diag}(\boldsymbol{s}_0) \boldsymbol{\mu}$$

- b_0 is the OLS estimate.
- λ is the shrinkage parameter and there is a one to one correspondence between the λ and t
- μ is zero for active and positive for nonactive coefficients
- parameters λ and μ are calculated satisfying the KKT conditions under the positivity constraints

- 442 observations
- age, sex, body mass index, average blood pressure and six blood serum measurements
- disease progression one year after baseline

We simulate 200 data sets consisting of 100 observations each from the following model,

$$oldsymbol{Y} = oldsymbol{eta}^Toldsymbol{X} + \sigma\epsilon, \quad \operatorname{corr}(oldsymbol{X}_i,oldsymbol{X}_j) =
ho^{|i-j|}$$

Dataset	n	р	β	σ	ρ
1	100	8	$(3, 1.5, 0, 0, 2, 0, 0, 0)^T$	3	0.50
2	100	8	(3, 1.5, 0, 0, 2, 0, 0, 0) ^T	3	0.90
3	100	8	0.85∀ <i>j</i>	3	0.50
4	100	8	$(5, 0, 0, 0, 0, 0, 0, 0)^T$	2	0.50

Table:Proportions of the casesthe correct model selected.

Dataset	Tibs-Lasso	Lars-Lasso	Pos-Lasso
1	0.06	0.13	0.14
2	0.02	0.04	0.04
3	0.84	0.89	0.87
4	0.09	0.19	0.19

Table:Proportions of agreementbetweenPos-Lasso and

Dataset	Tibs-Lasso	Lars-Lasso
1	0.76	0.83
2	0.63	0.65
3	0.95	0.98
4	0.77	0.78

ALS for CCA	and Lasso			
SCCA				
Introduction	CCA 0000	Lasso 000000	Sparse CCA ●○○○○○	Summary

Given the canonical variate $T = \beta^T \mathbf{Y}$,

$$\widehat{\boldsymbol{\alpha}} = \arg\min_{\boldsymbol{\alpha}} \left\{ var(T - \boldsymbol{\alpha}^T \boldsymbol{X}) \right\}$$

st $var(\boldsymbol{\alpha}^T \boldsymbol{X}) = 1$ and $||\boldsymbol{\alpha}||_1 \leq t$

We seek an algorithm solving this optimization problem or

Modify the Lasso algorithm in order to incorporate the equality constraint.

ALS for CCA	and Lasso			
SCCA				
Introduction	CCA 0000	Lasso 000000	Sparse CCA ●○○○○○	Summary

Given the canonical variate $T = \beta^T \mathbf{Y}$,

$$\widehat{\boldsymbol{\alpha}} = \arg\min_{\boldsymbol{\alpha}} \left\{ var(T - \boldsymbol{\alpha}^T \boldsymbol{X}) \right\}$$
st $var(\boldsymbol{\alpha}^T \boldsymbol{X}) = 1$ and $||\boldsymbol{\alpha}||_1 \leq t$

We seek an algorithm solving this optimization problem or

Modify the Lasso algorithm in order to incorporate the equality constraint.

ALS for CCA	and Lasso			
SCCA				
Introduction	CCA 0000	Lasso 000000	Sparse CCA ●○○○○○	Summary

Given the canonical variate $T = \beta^T \mathbf{Y}$,

$$\widehat{\alpha} = \arg\min_{\alpha} \left\{ var(T - \alpha^T \boldsymbol{X}) \right\}$$

st $var(\alpha^T \boldsymbol{X}) = 1$ and $||\alpha||_1 \le t$

We seek an algorithm solving this optimization problem or

Modify the Lasso algorithm in order to incorporate the equality constraint.

Introduction	CCA 0000	Lasso oooooo	Sparse CCA ○●○○○○	Summary
Algorithm for SCCA				
ALS for CCA	and Lasso			

Tibshirani's Lasso

NNLS algorithm cannot incorporate the equality constraint

Lars Lasso

the equality constraint violates the equiangular ondition

Positivity Lasso

by additionally imposing positivity constraints the above optimization problem can be solved.

Introduction	CCA 0000	Lasso 000000	Sparse CCA ○●○○○○	Summary
Algorithm for SCCA				
ALS for CCA	and Lasso			

Tibshirani's Lasso

NNLS algorithm cannot incorporate the equality constraint

Lars Lasso

the equality constraint violates the equiangular condition

Positivity Lasso

by additionally imposing positivity constraints the above optimization problem can be solved.

Introduction	CCA 0000	Lasso 000000	Sparse CCA ○●○○○○	Summary
Algorithm for SCCA				
ALS for CCA	and Lasso			

Tibshirani's Lasso

NNLS algorithm cannot incorporate the equality constraint

Lars Lasso

the equality constraint violates the equiangular condition

Positivity Lasso

by additionally imposing positivity constraints the above optimization problem can be solved.

SCCA with n	ositivity			
Algorithm for SCCA				
Introduction	CCA 0000	Lasso 000000	Sparse CCA	Summary

$$\min_{\boldsymbol{\alpha}} \left\{ \operatorname{var}(\boldsymbol{T} - \boldsymbol{\alpha}^{T} \boldsymbol{X}) \right\} \operatorname{st} \quad \boldsymbol{\alpha}^{T} \operatorname{var}(\boldsymbol{X}) \boldsymbol{\alpha} = 1,$$

nd $s_{0}^{T} \boldsymbol{\alpha} \leq t, \quad s_{0j} \alpha_{j} \geq 0 \quad \text{for} \quad j = 1, \dots, p$

- The entire Lasso path is derived by considering KKT conditions.
- Cross-validation methods select the shrinkage level applied.
- α_{sp} and β_{sp} for each set of variables are derived alternately until the corr(S_{sp} , T_{sp}) converges to its maximum.

SCCA with n	ositivity			
Algorithm for SCCA				
Introduction	CCA 0000	Lasso 000000	Sparse CCA	Summary

$$\min_{\boldsymbol{\alpha}} \left\{ \operatorname{var}(\boldsymbol{T} - \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{X}) \right\} \operatorname{st} \quad \boldsymbol{\alpha}^{\mathsf{T}} \operatorname{var}(\boldsymbol{X}) \boldsymbol{\alpha} = 1,$$

and $\boldsymbol{s}_{0}^{\mathsf{T}} \boldsymbol{\alpha} \leq t, \quad \boldsymbol{s}_{0j} \alpha_{j} \geq 0 \quad \text{for} \quad j = 1, \dots, p$

- The entire Lasso path is derived by considering KKT conditions.
- Cross-validation methods select the shrinkage level applied.
- α_{sp} and β_{sp} for each set of variables are derived alternately until the corr(S_{sp} , T_{sp}) converges to its maximum.

SCCA with n	ositivity			
Algorithm for SCCA				
Introduction	CCA 0000	Lasso 000000	Sparse CCA	Summary

$$\min_{\alpha} \left\{ \operatorname{var}(T - \alpha^T \boldsymbol{X}) \right\} \operatorname{st} \quad \alpha^T \operatorname{var}(\boldsymbol{X}) \alpha = 1,$$

and $\boldsymbol{s}_0^T \alpha \leq t, \quad \boldsymbol{s}_{0j} \alpha_j \geq 0 \quad \text{for} \quad j = 1, \dots, p$

- The entire Lasso path is derived by considering KKT conditions.
- Cross-validation methods select the shrinkage level applied.
- α_{sp} and β_{sp} for each set of variables are derived alternately until the corr(S_{sp}, T_{sp}) converges to its maximum.

SCCA with n	ositivity			
Algorithm for SCCA				
Introduction	CCA 0000	Lasso 000000	Sparse CCA ○○○●○○	Summary

Second dimension

$$\begin{split} \min_{\alpha} \left\{ \mathrm{var}(T - \alpha^T \boldsymbol{X}) \right\} & \text{st} \quad \alpha^T \mathrm{var}(\boldsymbol{X}) \alpha = 1, \quad \alpha_1^T \mathrm{var}(\boldsymbol{X}) \alpha = 0, \\ & \text{and} \quad s_0^T \alpha \leq t, \quad s_{0j} \alpha_j \geq 0 \quad \text{for} \quad j = 1, \dots, p \end{split}$$
where α_1 is the first dimensional loading.

- Cross-validation methods select the shrinkage level.
- Again alternating algorithm derives the second dimensional canonical loadings

SCCA with p	ositivity			
Algorithm for SCCA				
Introduction	CCA 0000	Lasso 000000	Sparse CCA ○○○●○○	Summary

Second dimension

$$\min_{\alpha} \left\{ \operatorname{var}(T - \alpha^T \boldsymbol{X}) \right\} \quad \text{st} \quad \alpha^T \operatorname{var}(\boldsymbol{X}) \alpha = 1, \quad \alpha_1^T \operatorname{var}(\boldsymbol{X}) \alpha = 0,$$

and $\boldsymbol{s}_0^T \alpha \leq t, \quad \boldsymbol{s}_{0j} \alpha_j \geq 0 \quad \text{for} \quad j = 1, \dots, p$

where α_1 is the first dimensional loading.

- Cross-validation methods select the shrinkage level.
- Again alternating algorithm derives the second dimensional canonical loadings

SCCA with n	oeitivity			
Algorithm for SCCA				
Introduction	CCA 0000	Lasso 000000	Sparse CCA	Summary

Second dimension

$$\min_{\boldsymbol{\alpha}} \left\{ \operatorname{var}(\boldsymbol{T} - \boldsymbol{\alpha}^{\mathsf{T}} \boldsymbol{X}) \right\} \quad \text{st} \quad \boldsymbol{\alpha}^{\mathsf{T}} \operatorname{var}(\boldsymbol{X}) \boldsymbol{\alpha} = 1, \quad \boldsymbol{\alpha}_{1}^{\mathsf{T}} \operatorname{var}(\boldsymbol{X}) \boldsymbol{\alpha} = 0, \\ \text{and} \quad \boldsymbol{s}_{0}^{\mathsf{T}} \boldsymbol{\alpha} \leq t, \quad \boldsymbol{s}_{0j} \boldsymbol{\alpha}_{j} \geq 0 \quad \text{for} \quad j = 1, \dots, p$$

where α_1 is the first dimensional loading.

- Cross-validation methods select the shrinkage level.
- Again alternating algorithm derives the second dimensional canonical loadings

Introduction	CCA 0000	Lasso 000000	Sparse CCA ○○○○●○	Summary
Example				
Simulations				

We simulate 300 observations of the following model.

Introduction	CCA 0000	Lasso 000000	Sparse CCA ○○○○○●	Summary
Example				
Simulations				

	1st dim		2nd dim	
Variable	CCA	SCCA	CCA	SCCA
X ₁	0.229	0.248	0.122	0.056
X ₂	0.350	0.366	-0.052	0
X 3	0.337	0.341	0.027	0
X 4	0.304	0.298	0.114	0
X 5	0.135	0.014	0.198	0.208
X 6	-0.037	0	0.381	0.472
X 7	-0.052	0	0.212	0.183
X 8	-0.052	0	0.205	0.266
X 9	-0.111	0	0.166	0.177
X ₁₀	-0.019	0	0.168	0
Y ₁	0.402	0.419	0.112	0.014
Y ₂	0.460	0.444	-0.018	0
Y ₃	0.309	0.325	0.085	0
\mathbf{Y}_4	-0.018	0	0.279	0.421
Y ₅	0.032	0	0.183	0.008
Y ₆	-0.113	-0.028	0.395	0.361
Y ₇	-0.089	-0.025	0.384	0.427
ρ	0.745	0.737	0.654	0.638
RdX (%)	14.2	13.9	13.4	12.6
RdY (%)	16.6	16.4	15	14
Var.Ext of X (%)	25.7	25.5	31.4	30.9
Var.Ext of Y (%)	30	30.1	35	33.8

Introduction	CCA 0000	Lasso oooooo	Sparse CCA oooooo	Summary
Summary				

Extra work

 Sparse CCA without positivity constraints using Lars-Lasso algorithm

Further work

- Compare the performance of SCCA with and without positivity constraints
- Bayesian model selection

Imposing different Lasso penalties Using GVS, Dellaportas et al. (2002) Bayesian version of the SCCA

Literature

- Dellaportas, P., Forster, J., and Ntzoufras, I. (2002). On bayesian model and variable selection using mcmc. *Statistics and Computing*, 12:27–36.
- Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least angle regression. *Annals of Statistics*, 32:407–499.
- Jolliffe, I., Trendafilov, N., and Uddin, M. (2003). A modified principal component technique based on the lasso. *Journal of Computational and Graphical Statistics*, 12(3):531–547.
- Lawson, C. and Hanson, R. (1974). *Solving Least Square Problems*. Prentice Hall, Englewood Cliffs, NJ.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *J. Royal. Statist. Soc. B.*, 58:267–288.
- Zou, H., Hastie, T., and Tibshirani, T. (2004). Sparse principal component analysis. *to appear, JCGS*.

SCCA

Figure: CCA and SCCA with positivity

Figure: SCCA without positivity

Lawson and Hanson (1974) define the following problems,

LSI problem	
LSI problem:	$\textit{min}_{oldsymbol{eta}} oldsymbol{Y} - oldsymbol{eta}^{ op} oldsymbol{X} $ subject to $oldsymbol{G}eta \geq oldsymbol{h}$
NNLS problem:	$\textit{min}_{oldsymbol{eta}} oldsymbol{Y}-oldsymbol{eta}^{ op}oldsymbol{X} ~~ ext{subject to}~~oldsymbol{eta}\geq 0$
LDP problem:	$\textit{min}_{oldsymbol{eta}} oldsymbol{eta}^{T} $ subject to $\mathbf{G}oldsymbol{eta}\geq\mathbf{h}$

LSI is equivalent to Lasso \rightarrow LDP \rightarrow NNLS