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Motivation

SCCA
improve the interpretation of CCA

sparse principal component analysis (SCoTLASS by
Jolliffe et al. (2003) and SPCA by Zou et al. (2004))

interesting data sets (market basket analysis)
Sparsity

shrinkage and model selection simultaneously
(may reduce the prediction error, can be extended to
high-dimensional data sets)
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Definition

Canonical Correlation Analysis

X1

Xp

S

Y1

Yq

T

seek linear combinations S = αT X and T = βT Y such
that ρ = maxα,β corr(S,T )

S,T are the canonical variates
α,β are called conical loadings
Standard solution through eigen decomposition.
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CCA as least squares problem

1st dimension

Theorem1
Let α, β be p, q dimensional vectors, respectively.

(α̂, β̂) = argminα,β

{
var(αT X − βT Y )

}
,

subject to αT var(X )α = βT var(Y )β = 1.

Then α̂, β̂ are proportional to the first dimensional ordinary
canonical loadings.
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CCA as least squares problem

2nd dimension

Theorem2
Let α, β be p, q dimensional vectors.

(α̂, β̂) = argminα,β

{
var(αT X − βT Y )

}
,

st αT var(X )α = βT var(Y )β = 1 and
αT

1 var(X )α = βT
1 var(Y )β = 0

where α1,β1 are the first canonical loadings.
Then, α̂, β̂ are proportional to the second dimensional ordinary
canonical loadings.

The theorems establish an Alternating Least Squares
algorithm for CCA.
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CCA as least squares problem

ALS for CCA

Let the objective function be

Q(α,β) = var(αT X − βT Y )

subject to αT var(X )α = βT var(Y )β = 1.

Q is continuous with closed and bounded domain⇒ Q attains
its infimum

ALS algorithm
Given α̂

β̂ = arg minβQ(α̂,β) subject to var(βT Y ) = 1)

Given β̂

α̂ = arg minαQ(α, β̂) subject to var(αT X ) = 1)

Q decreases over the iterations and is bounded from below⇒
Q converges.
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Definition

Lasso (least absolute shrinkage and selection operator)

Introduced by Tibshirani (1996)
Imposes the L1 norm on the linear regression coefficients.

Lasso

β̂lasso = argminβ

{
var(Y− βT X )

}
subject to

∑p
j=1 |βj | ≤ t

The L1 norm properties shrink the coefficients towards
zero and exactly to zero if t is small enough.
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Lasso algorithms

Lasso algorithms available in the literature

Lasso by Tibshirani

Expresses the problem as a least squares problem
with 2p inequality constraints

Adapts the NNLS algorithm

Lars-Lasso

A modified version of Lars algorithm introduced by
Efron et al. (2004)

Lasso estimates are calculated such that the angle
between the active covariates and the residuals is
always equal.
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Lasso algorithms

Proposed algorithm

Lasso with positivity constraints
Suppose that the sign of the coefficients does not change
during shrinkage of the coefficients

Positivity Lasso

β̂lasso = argminβ

{
var(Y − βT X )

}
subject to st

0β ≤ t and s0jβj ≥ 0 for i = 1 . . . ,p

where s0 is the sign of the OLS estimate.

simple algorithm, but quite general
restricted version of Lasso algorithms, since the sign of the
coefficients cannot change
up to p + 1 constraints imposed, << 2p constraints of
Tibshirani’s Lasso
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Lasso algorithms

Numerical solution

The solution is given through quadratic programming methods,

Positivity Lasso solution

β̂ = b0 − λ var(X )−1s0 + var(X )−1 diag (s0)µ

b0 is the OLS estimate.
λ is the shrinkage parameter and there is a one to one
correspondence between the λ and t
µ is zero for active and positive for nonactive coefficients
parameters λ and µ are calculated satisfying the KKT
conditions under the positivity constraints
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The Lasso algorithms contrasted

Diabetes data set

442 observations
age, sex, body mass index, average blood pressure and
six blood serum measurements
disease progression one year after baseline
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The Lasso algorithms contrasted

Simulation studies

We simulate 200 data sets consisting of 100 observations each
from the following model,

Y = βT X + σε, corr(Xi ,Xj) = ρ|i−j|

Dataset n p β σ ρ

1 100 8 (3, 1.5, 0, 0, 2, 0, 0, 0)T 3 0.50
2 100 8 (3, 1.5, 0, 0, 2, 0, 0, 0)T 3 0.90
3 100 8 0.85∀j 3 0.50
4 100 8 (5, 0, 0, 0, 0, 0, 0, 0)T 2 0.50

Table: Proportions of the cases
the correct model selected.

Dataset Tibs-Lasso Lars-Lasso Pos-Lasso

1 0.06 0.13 0.14
2 0.02 0.04 0.04
3 0.84 0.89 0.87
4 0.09 0.19 0.19

Table: Proportions of agreement
between Pos-Lasso and

Dataset Tibs-Lasso Lars-Lasso

1 0.76 0.83
2 0.63 0.65
3 0.95 0.98
4 0.77 0.78
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SCCA

ALS for CCA and Lasso

First dimension
Given the canonical variate T = βT Y,

α̂ = arg minα

{
var(T −αT X )

}
st var(αT X ) = 1 and ||α||1 ≤ t

We seek an algorithm solving this optimization problem
or
Modify the Lasso algorithm in order to incorporate the equality
constraint.
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Algorithm for SCCA

ALS for CCA and Lasso

Tibshirani’s Lasso
NNLS algorithm cannot incorporate the equality

constraint
Lars Lasso

the equality constraint violates the equiangular
condition
Positivity Lasso

by additionally imposing positivity constraints the
above optimization problem can be solved.
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Algorithm for SCCA

SCCA with positivity

First dimension

min
α

{
var(T −αT X )

}
st αT var(X )α = 1,

and sT
0 α ≤ t , s0jαj ≥ 0 for j = 1, . . . ,p

The entire Lasso path is derived by considering KKT
conditions.
Cross-validation methods select the shrinkage level
applied.
αsp and βsp for each set of variables are derived
alternately until the corr(Ssp,Tsp) converges to its
maximum.
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Algorithm for SCCA

SCCA with positivity

Second dimension

min
α

{
var(T −αT X )

}
st αT var(X )α = 1, αT

1 var(X )α = 0,

and sT
0 α ≤ t , s0jαj ≥ 0 for j = 1, . . . ,p

where α1 is the first dimensional loading.

Cross-validation methods select the shrinkage level.
Again alternating algorithm derives the second
dimensional canonical loadings
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Example

Simulations

We simulate 300 observations of the following model.1

r = 0.98

r = 0.90

X4

. . .

X1

X5

. . .

X10

Y3

. . .

Y1

Y4

. . .

Y7

S1 T1

S2 T2
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Example

Simulations

1st dim 2nd dim
Variable CCA SCCA CCA SCCA

X1 0.229 0.248 0.122 0.056
X2 0.350 0.366 -0.052 0
X3 0.337 0.341 0.027 0
X4 0.304 0.298 0.114 0
X5 0.135 0.014 0.198 0.208
X6 -0.037 0 0.381 0.472
X7 -0.052 0 0.212 0.183
X8 -0.052 0 0.205 0.266
X9 -0.111 0 0.166 0.177
X10 -0.019 0 0.168 0

Y1 0.402 0.419 0.112 0.014
Y2 0.460 0.444 -0.018 0
Y3 0.309 0.325 0.085 0
Y4 -0.018 0 0.279 0.421
Y5 0.032 0 0.183 0.008
Y6 -0.113 -0.028 0.395 0.361
Y7 -0.089 -0.025 0.384 0.427

ρ 0.745 0.737 0.654 0.638
RdX (%) 14.2 13.9 13.4 12.6
RdY (%) 16.6 16.4 15 14

Var.Ext of X (%) 25.7 25.5 31.4 30.9
Var.Ext of Y (%) 30 30.1 35 33.8
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Summary

Extra work
Sparse CCA without positivity constraints

using Lars-Lasso algorithm
Further work

Compare the performance of SCCA with and without
positivity constraints
Bayesian model selection

Imposing different Lasso penalties
Using GVS, Dellaportas et al. (2002)
Bayesian version of the SCCA
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SCCA

S1 = a1’X T1 = b1’Y
p1

S2 = a2’X T2 = b2’Y
p2

S1 = a1’X T1 = b1’Y
p1

S2 = a2’X T2 = b2’Y
p2

Figure: CCA and SCCA with positivity

S1 = a1’X T1 = b1’Y
p1

S2 = a2’Xres T2 = b2’Yres
p2

Figure: SCCA without positivity
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NNLS

Lawson and Hanson (1974) define the following problems,

LSI problem

LSI problem: minβ||Y − βT X || subject to Gβ ≥ h
NNLS problem: minβ||Y− βT X || subject to β ≥ 0

LDP problem: minβ||βT || subject to Gβ ≥ h

LSI is equivalent to Lasso→ LDP→ NNLS
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