A new Bayesian variable

 selection criterion based on a g-Prior extension for $p>n$ Yuzo Maruyama and Edward GeorgeCSIS, The University of Tokyo, Japan
Department of Stat, University of Pennsylvania

Overview: Our recommendable Bayes factor

$$
\left\{\begin{array}{l}
\left\{\overline{\operatorname{sv}}\left[X_{\gamma}\right] \times\left\|\hat{\beta}_{L S E}^{M P}[\gamma]\right\|\right\}^{-n+1} \quad \text { if } q_{\gamma} \geq n-1 \\
\quad \frac{d_{q_{\gamma}}^{q_{\gamma}^{\gamma}}\left(1-R_{\gamma}^{2}\right)^{-\frac{n-q_{\gamma}}{2}+\frac{3}{4}} B\left(\frac{q_{\gamma}}{2}+\frac{1}{4}, \frac{n-q_{\gamma}}{2}-\frac{3}{4}\right)}{\overline{\operatorname{sv}\left[X_{\gamma} q_{\gamma}\left(1-R_{\gamma}^{2}+d_{q_{\gamma}}^{2}\left\|\hat{\beta}_{L S E}[\gamma]\right\|^{2}\right)^{\frac{1}{4}+\frac{q_{\gamma}}{2}} B\left(\frac{1}{4}, \frac{n-q_{\gamma}}{2}-\frac{3}{4}\right)\right.}} \begin{array}{l}
\quad \text { if } q_{\gamma} \leq n-2
\end{array}
\end{array}\right.
$$

- A criterion based on full Bayes
- but we need no MCMC
- An exact closed form by using a special prior
- applicable for $p>n$ as well as $n>p$
- model selection consistency and good numerical performance

Introduction

Priors

Sketch of the calculation of the marginal density

The estimation after selection

Model selection consistency

Numerical experiments

Summary and Future work

Full model

- $Y \mid\left\{\alpha, \beta, \sigma^{2}\right\} \sim N_{n}\left(\alpha 1_{n}+X \beta, \sigma^{2} I\right)$
- α : an intercept parameter
- $1_{n}=(1,1, \ldots, 1)^{\prime}$
- $X=\left(X_{1}, \ldots, X_{p}\right)$: an $n \times p$ standarized design matrix \quad rank $X=\min (n-1, p)$
- β : a $p \times 1$ vector of unknown coefficients
- σ^{2} : an unknown variance

Since there is usually a subset of useless regressors in the full model, we would like to choose a good sub-model with only important regressors.

Submodel

- submodel \mathcal{M}_{γ}

$$
Y \mid\left\{\alpha, \beta_{\gamma}, \sigma^{2}\right\} \sim N_{n}\left(\alpha 1_{n}+X_{\gamma} \beta_{\gamma}, \sigma^{2} I\right)
$$

- Assume the intercept is always included
- X_{γ} : the $n \times q_{\gamma}$ matrix, rank $X_{\gamma}=\min \left(n-1, q_{\gamma}\right)$ columns $=$ the γ th subset of X_{1}, \ldots, X_{p}
- β_{γ} : a $q_{\gamma} \times 1$ vector of unknown regression coefficients
- q_{γ} : the number of regressors of \mathcal{M}_{γ}
- The null model: The special case of sub-model

$$
\mathcal{M}_{N}: Y \mid\left\{\alpha, \sigma^{2}\right\} \sim N_{n}\left(\alpha 1_{n}, \sigma^{2} I\right)
$$

Variable selection in the Bayesian framework

- It entails the specification of prior
- on the models $\operatorname{Pr}\left(\mathcal{M}_{\gamma}\right)$
- on parameters $p\left(\alpha, \beta_{\gamma}, \sigma^{2}\right)$ of each model
- Assumption: equal model space probability

$$
\operatorname{Pr}\left(\mathcal{M}_{\gamma}\right)=\operatorname{Pr}\left(\mathcal{M}_{\gamma^{\prime}}\right) \text { for any } \gamma \neq \gamma^{\prime}
$$

- Choose \mathcal{M}_{γ} as the best model which maximizes
posterior prob. $\operatorname{Pr}\left(\mathcal{M}_{\gamma} \mid y\right)=\frac{m_{\gamma}(y)}{\sum_{\gamma} m_{\gamma}(y)}$
- $m_{\gamma}(y)$: the marginal density under \mathcal{M}_{γ}
larger $m_{\gamma}(y)$ is better!

Variable selection in the Bayesian framework

- the marginal density

$$
m_{\gamma}(y)=\iiint p_{y}\left(y \mid \alpha, \beta_{\gamma}, \sigma^{2}\right) p\left(\alpha, \beta_{\gamma}, \sigma^{2}\right) d \alpha d \beta_{\gamma} d \sigma^{2}
$$

- Recall that we consider Full Bayes method, which means the joint prior density $p\left(\alpha, \beta_{\gamma}, \sigma^{2}\right)$ does not depend on data unlike Empirical Bayes method.
- Bayes factor is often used for expression of $\operatorname{Pr}\left(\mathcal{M}_{\gamma} \mid y\right)$

$$
\begin{aligned}
& \operatorname{Pr}\left(\mathcal{M}_{\gamma} \mid y\right)=\frac{\operatorname{BF}\left(\mathcal{M}_{\gamma} ; \mathcal{M}_{N}\right)}{\sum_{\gamma} \operatorname{BF}\left(\mathcal{M}_{\gamma} ; \mathcal{M}_{N}\right)} \\
& \text { where } \operatorname{BF}\left(\mathcal{M}_{\gamma} ; \mathcal{M}_{N}\right)=\frac{m_{\gamma}(y)}{m_{N}(y)}
\end{aligned}
$$

Introduction

Priors

Sketch of the calculation of the marginal density

The estimation after selection

Model selection consistency

Numerical experiments

Summary and Future work

Priors

- The form of our joint density

$$
\begin{aligned}
p\left(\alpha, \beta_{\gamma}, \sigma^{2}\right) & =p(\alpha) p\left(\sigma^{2}\right) p\left(\beta \mid \sigma^{2}\right) \\
& =1 \times \sigma^{-2} \times \int p\left(\beta \mid g, \sigma^{2}\right) p(g) d g
\end{aligned}
$$

- $1 \times \sigma^{-2}$: a popular non-informative prior
- improper but justificated because α and σ^{2} are included in all submodels
- $p\left(\beta \mid g, \sigma^{2}\right)$ and $p(g)$

The original Zellner's g-prior

- prior of regression coefficients
- Zellner's (1986) g-prior is popular

$$
p_{\beta_{\gamma}}\left(\beta_{\gamma} \mid \sigma^{2}, g\right)=N_{q_{\gamma}}\left(0, g \sigma^{2}\left(X_{\gamma}^{\prime} X_{\gamma}\right)^{-1}\right)
$$

- It is applicable for the traditional situation $p+1<n$

$$
\Rightarrow q_{\gamma}+1<n \text { for any } \mathcal{M}_{\gamma}
$$

- There are many papers which use g-priors including George and Foster (2000, Biometrika) and Liang et al. (2008, JASA)

The beauty of the g-prior

- The marginal density of y given g and σ^{2}
$\exp \left(\frac{g}{g+1}\left\{\max _{\alpha, \beta_{\gamma}} \log p\left(Y \mid \alpha, \beta_{\gamma}, \sigma^{2}\right)-\frac{q_{\gamma}}{2} \frac{g+1}{g} \log (g+1)\right\}\right)$
- Under known σ^{2},

$$
g^{-1}(g+1) \log (g+1)=2, \text { or } \log n
$$

leads to AIC by Akaike (1974) and BIC by Schwarz
(1978) respectively

- several studies: how to choose g based on non-full Bayesian method

Many regressors case $(p>n)$

- In modern statistics, treating (very) many regressors case $(p>n)$ becomes more and more important
- the original Zellner's g-prior is not available
- R^{2} is always 1 in the case where $q_{\gamma} \geq n-1$ \Rightarrow naive AIC and BIC methods do not work
- When we do not use the original g-prior, Bayesian method is available in many regressors case for example $\beta \sim N\left(0, \sigma^{2} \lambda I\right)$
- inverse-gamma conjugate prior for σ^{2} are also available

Many regressors case $(p>n)$

- The integral with respect to λ still remains in $m_{\gamma}(y)$ as long as the full Bayes method is considered.
- Needless to say, it should be calculated by numerical methods like MCMC or by approximation like Laplace method.
- We do not have comparative advantage in numerical methods,,,,",
- We like exact analytical results very much.

A variant of Zellner's g-prior

- a special variant of g-prior which enables us to
- not only calculate the marginal density analytically (closed form!!)
- but also treat many regressors case
- [KEY] singular value decomposition of X_{γ}

$$
X_{\gamma}=U_{\gamma} D_{\gamma} W_{\gamma}^{\prime}=\sum_{i=1}^{r} d_{i}[\gamma] u_{i}[\gamma] w_{i}^{\prime}[\gamma]
$$

- r : rank of $X=\min \left(q_{\gamma}, n-1\right)$
- the $n-1$ is from " X is the centered matrix"
- singular values $d_{1}[\gamma] \geq \cdots \geq d_{r}[\gamma]>0$

A special variant of g-prior

$$
\begin{aligned}
& p_{\beta}\left(\beta \mid g, \sigma^{2}\right)=\left\{\begin{array}{l}
\prod_{i=1}^{n-1} p_{i}\left(w_{i}^{\prime} \beta \mid g, \sigma^{2}\right) \times \overbrace{p_{\#}\left(W_{\#}^{\prime} \beta\right)}^{\text {arbitrary }} \\
\text { if } q \geq n \\
\prod_{i=1}^{q} p_{i}\left(w_{i}^{\prime} \beta \mid g, \sigma^{2}\right) \text { if } q \leq n-1
\end{array}\right. \\
& p_{i}\left(\cdot \mid g, \sigma^{2}\right)=N\left(0, \frac{\sigma^{2}}{d_{i}^{2}}\left\{\nu_{i}(1+g)-1\right\}\right)
\end{aligned}
$$

$W_{\#}:$ a $q \times(q-r)$ matrix from the orthogonal complement of W
c.f. original g-prior $p_{\beta}\left(\beta \mid g, \sigma^{2}\right)=\prod_{i=1}^{q} p_{i}\left(w_{i}^{\prime} \beta \mid g, \sigma^{2}\right)$ if $q \leq n-1$

$$
p_{i}\left(\cdot \mid g, \sigma^{2}\right)=N\left(0, g \frac{\sigma^{2}}{d_{i}^{2}}\right)
$$

A special variant of g-prior

- $\nu_{1}, \ldots, \nu_{r}\left(\nu_{i} \geq 1\right)$ where $r=\min \{n-1, q\}$ hyperparameters we have to fix
- $q \leq n-1 \Rightarrow\left(Z^{\prime} Z\right)^{-1}$ exists
$\nu_{1}=\cdots=\nu_{q}=1 \Rightarrow$ the original Zellner's prior
- the descending order $\nu_{1} \geq \cdots \geq \nu_{r}$ like

$$
\left.\nu_{i}=d_{i}^{2} / d_{r}^{2} \quad \text { (our recommendation }\right)
$$

for $1 \leq i \leq r$ is reasonable for our purpose

- numerical experiment and the estimation after selection support the choice

Introduction

Priors

Sketch of the calculation of the marginal density

The estimation after selection

Model selection consistency

Numerical experiments

Summary and Future work

Sketch of the calculation of the marginal density

- we have prepared all of priors except for g (we will give a prior of g later)
- the marginal density of y given g
$=$ the marignal density after the integration w.r.t. $\alpha, \beta, \sigma^{2}$

$$
\begin{aligned}
m_{\gamma}(y \mid g)= & C(n, y)\left\{(g+1)\left(1-R_{\gamma}^{2}\right)+\mathrm{GR}_{\gamma}^{2}\right\}^{-(n-1) / 2} \\
& \times \frac{(1+g)^{-r / 2+(n-1) / 2}}{\prod_{i=1}^{r} \nu_{i}^{1 / 2}}
\end{aligned}
$$

where $\mathrm{G} R_{\gamma}^{2}$ means the "generalized" R_{γ}^{2}

$$
\mathrm{G} R_{\gamma}^{2}=\sum_{i=1}^{r} \frac{\left(u_{i}^{\prime}\left\{y-\bar{y} 1_{n}\right\}\right)^{2}}{\nu_{i}\left\|y-\bar{y} 1_{n}\right\|^{2}}
$$

Many regressors case

- rank of $X=r=n-1, R_{\gamma}^{2}=1$
- $m_{\gamma}(y \mid g)$ does not depend on g
$m_{\gamma}(y)=m_{\gamma}(y \mid g)=C(n, y) \prod_{i=1}^{n-1} \nu_{i}^{-1 / 2}\left(G R_{\gamma}^{2}\right)^{-(n-1) / 2}$
- If $\nu_{1}=\cdots=\nu_{n-1}=1, G R_{\gamma}^{2}$ just becomes 1 and hence $m_{\gamma}(y)=C(n, y)$
- it does not work for model selection because it always takes the same value in many regressors case
- That is why the choice of ν is important.
few regressors case $(q \leq n-2)$
- $p_{g}(g)=\{B(a+1, b+1)\}^{-1} g^{b}(1+g)^{-a-b-2}$
- it is proper if $a>-1$ and $b>-1$
- Liang et al (2008, JASA) "hyper-g priors" $b=0$

$$
p_{g}(g)=(a+1)^{-1}(g+1)^{-a-2}
$$

- $b=(n-5-r) / 2-a$ is for getting a closed simple form of the marginal density
- $-1<a<-1 / 2$ is for well-defining the marginal density of every sub-model
- The median $a=-3 / 4$ is our recommendation

Sketch of the calculation of the marginal density

- When $b=(n-5) / 2-r / 2-a$, the beta function takes the integration w.r.t. g

$$
\begin{aligned}
& \int m_{\gamma}(y \mid g) p(g) d g \\
& =\frac{C(n, y) B(q / 2+a+1, b+1)\left(1-R_{\gamma}^{2}+\mathrm{GR}_{\gamma}^{2}\right)^{-(n-1) / 2+b+1}}{\prod_{i=1}^{r} \nu_{i}^{1 / 2} B(a+1, b+1)\left(1-R_{\gamma}^{2}\right)^{b+1}}
\end{aligned}
$$

- When $b \neq(n-5) / 2-r / 2-a$, there remains an integral with R_{γ}^{2} and $G R_{\gamma}^{2}$ in $m_{\gamma}(y)$
\Rightarrow the need of MCMC or approximation
- Liang et al (2008, JASA) $b=0, \nu_{1}=\cdots=\nu_{r}=1$ the Laplace approximation

Our recommendable BF

- After insertion of our recommendable hyperparameters $a=-3 / 4, b=(n-5) / 2-r / 2-a$ and $\nu_{i}=d_{i}^{2} / d_{r}^{2}$
Our criterion $\operatorname{BF}\left[\mathcal{M}_{\gamma} ; \mathcal{M}_{N}\right]=m_{\gamma}(y) / m_{N}(y)$ becomes

$$
\left\{\begin{array}{l}
\left\{\overline{\operatorname{sv}}\left[X_{\gamma}\right] \times\left\|\hat{\beta}_{L S E}^{M P}[\gamma]\right\|\right\}^{-n+1} \quad \text { if } q_{\gamma} \geq n-1 \\
\frac{d_{q_{\gamma}}^{q_{\gamma}}\left(1-R_{\gamma}^{2}\right)^{-\frac{n-q_{\gamma}}{2}+\frac{3}{4}} B\left(\frac{q_{\gamma}}{2}+\frac{1}{4}, \frac{n-q_{\gamma}}{2}-\frac{3}{4}\right)}{\overline{\operatorname{sv}}\left[X_{\gamma}\right]^{q_{\gamma}}\left(1-R_{\gamma}^{2}+d_{q_{\gamma}}^{2}\left\|\hat{\beta}_{L S E}[\gamma]\right\|^{2}\right)^{\frac{1}{4}+\frac{q_{\gamma}}{2}} B\left(\frac{1}{4}, \frac{n-q_{\gamma}}{2}-\frac{3}{4}\right)} \\
\quad \text { if } q_{\gamma} \leq n-2
\end{array}\right.
$$

- It is exactly proportional to the posterior probability
- based on fundamental aggregated information of y and X_{γ}

Our recommendable BF

- $\hat{\beta}_{L S E}[\gamma]$: the normal LSE
- $\hat{\beta}_{L S E}^{M P}[\gamma]$: the LSE using the Moore-Pennrose inverse matrix of X_{γ}

$$
\hat{\beta}_{L S E}^{M P}[\gamma]=\sum_{i=1}^{n-1} \frac{w_{i}\left[\gamma \mid u_{i}^{\prime}[\gamma]\left(y-\bar{y} 1_{n}\right)\right.}{d_{i}(\gamma]\left\|y-\bar{y} 1_{n}\right\|}=\frac{x_{\gamma}^{-}\left(y-\overline{-} 1_{n}\right)}{\left\|y-\overline{1} 1_{n}\right\|}
$$

- $\overline{\operatorname{sv}}\left[X_{\gamma}\right]$: the geometric mean of the singular values of X_{γ}

$$
\overline{\operatorname{sv}}\left[X_{\gamma}\right]=\left\{\prod_{i=1}^{r} d_{i}[\gamma]\right\}^{1 / r}
$$

one of the most important scalar of design matrix X

Interpretation of many regressors case

- $\hat{\beta}_{L S E}^{M P}[\gamma]$: the minimizer of $\|\beta\|$ among the solutions

$$
\text { of the equation } \frac{y-\bar{y} 1_{n}}{\left\|y-\bar{y} 1_{n}\right\|}=X_{\gamma} \beta
$$

under each submodel \mathcal{M}_{γ}

- $\left\|\hat{\beta}_{L S E}^{M P}[\gamma]\right\|$ itself is not comparable beyond the submodel
- $\overline{\operatorname{sv}}\left[X_{\gamma}\right] \times\left\|\hat{\beta}_{L S E}^{M P}[\gamma]\right\|$ is comparable
- the smallest $\overline{\operatorname{sv}}\left[X_{\gamma}\right] \times\left\|\hat{\beta}_{L S E}^{M P}[\gamma]\right\|$ means the best among the submodels \mathcal{M}_{γ} which satisfies $q_{\gamma} \geq n-1$

Introduction

Priors

Sketch of the calculation of the marginal density

The estimation after selection

Model selection consistency

Numerical experiments

Summary and Future work

The estimation after selection

- In order to avoid the identifiability when $n<q$, we consider the estimator of $X \beta$

$$
\begin{aligned}
X \hat{\beta}_{B A Y E S} & =\sum_{i=1}^{\min (q, n-1)}\left(u_{i}^{\prime} v\right) u_{i}\left\{1-\frac{E\left[(1+g)^{-1} \mid y\right]}{\nu_{i}}\right\} \\
X \hat{\beta}_{L S E} & =\sum_{i=1}^{\min (q, n-1)}\left(u_{i}^{\prime} v\right) u_{i}
\end{aligned}
$$

- u_{1} : the normalized first principal component
- $u_{\min (q, n-1)}$: the normalized last principal component

The estimation after selection

- The descending order $\nu_{1} \geq \cdots \geq \nu_{\min (q, n-1)}$ is reasonable
- less important components get shrunk more!
- See Hastie, Friedman, Tibshirani's book.
- On the other hand, the original Zellner's g-prior cannot make such a reasonable effect

$$
\left\{1-E\left[(1+g)^{-1} \mid y\right]\right\} X \hat{\beta}_{L S E}
$$

- This effect supports the descending order of ν

Introduction

Priors

Sketch of the calculation of the marginal density

The estimation after selection

Model selection consistency

Numerical experiments

Summary and Future work

Model selection consistency

- the case where p is fixed and n is large
- Definition
$\operatorname{plim}_{n} p\left(\mathcal{M}_{\gamma} \mid y\right)=1$ if \mathcal{M}_{γ} is the true model
- A standard assumption: \exists p.d. matrix H_{γ} s.t.

$$
\lim \frac{1}{n} X_{\gamma}^{\prime} X_{\gamma}=H_{\gamma}
$$

- Our criterion has model selection consistency!

Introduction

Priors

Sketch of the calculation of the marginal density

The estimation after selection

Model selection consistency

Numerical experiments

Summary and Future work

Numerical experiments

possible regressors $p=16$
correlated case

$$
\overbrace{x_{1}, x_{2}}^{\mathrm{cor}=0.9}, \underbrace{x_{3}, x_{4}}_{\text {cor }=-0.7}, \overbrace{x_{5}, x_{6}}^{\mathrm{cor}=0.5}, \underbrace{x_{7}, x_{8}}_{\text {cor }=-0.3} \sim N(0,1)
$$

$$
\text { cor }=0.1
$$

$$
\overbrace{x_{9}, x_{10}}, x_{11}, x_{12}, x_{13} \sim N(0,1), x_{14}, x_{15}, x_{16} \sim U(-1,1)
$$

simple case $x_{1}, \ldots, x_{16} \sim N(0,1)$

Numerical experiments
$n=30$ (hence so called $n>p$ case)
4 true models

$$
Y=1+2 \sum_{i \in\{\text { true }\}} x_{i}+\{\text { normal error term } N(0,1)\}
$$

- full model $\left(q_{T}=16\right)$
- $x_{1}, \ldots, x_{10}, x_{11}, x_{14}\left(q_{T}=12\right)$
- $x_{1}, x_{2}, x_{5}, x_{6}, x_{9}, x_{10}, x_{11}, x_{14}\left(q_{T}=8\right)$
- $x_{1}, x_{2}, x_{5}, x_{6}\left(q_{T}=4\right)$

Numerical experiments

competitors of our BF
AIC $=-2 \times$ max. \log likelihood $+2(q+2)$
AICc $=-2 \times \max . \log$ likelihood $+2(q+2) \frac{n}{n-q-3}$
BIC $=-2 \times$ max. \log likelihood $+q \log n$
ZE: $\mathrm{BF}\left[\mathcal{M}_{\gamma} ; \mathcal{M}_{N}\right]$ with $a=-3 / 4, \nu_{1}=\cdots=\nu_{q}=1$
(the effect of descending order ν)
EB: empirical Bayes criterion: George and Foster (2000)

$$
\max _{g} m_{\gamma}\left(y \mid g, \hat{\sigma}^{2}\right) \quad \hat{\sigma}^{2}=\operatorname{RSS} /(n-q-1)
$$

(the effect of full Bayes)
bigger is better

	cor	simple	cor	simple
BF	0.71	0.98		0.73
ZE	0.40	0.94	0.86	
EB	$\mathbf{1 6}$	0.41	0.95	$\mathbf{1 2}$
AIC	0.93	0.63	0.87	
AICc	0.25	1.00		0.23
BIC	0.88	0.92	0.62	
BF	0.69	0.77		0.41
ZE	0.68	0.78	0.65	0.41
EB	$\mathbf{8}$	0.67	0.76	$\mathbf{4}$
AIC	0.09	0.67	0.68	
AICc	0.52	0.08	0.65	
BIC	0.31	0.27	0.25	0.05

Table: Frequency of the top of the true model

Numerical experiments (findings)

- [correlated and simple] AIC and BIC are too bad for all except $q_{T}=16$.
- [correlated and simple] AICc is bad for $q_{T}=16$ and 4 while it is good for $q_{T}=8,12$.
- [simple] BF, ZE and EB are very similar. There is no effect of the extention of Zellner's g-prior with descending ν.
- [correlated] EB, ZE and BF are very similar for $q_{T}=4,8$, but BF is much better for $q=12,16$.

In summary, our BF is the best for most case and extremely stable. The extention of Zellner's g-prior with descending ν is quite effective.

Numerical experiments

(in-sample) predictive error of selected model

$$
\frac{\left(\hat{y}_{*}-\alpha_{T} 1_{n}-X_{T} \beta_{T}\right)^{\prime}\left(\hat{y}_{*}-\alpha_{T} 1_{n}-X_{T} \beta_{T}\right)}{n \sigma^{2}}
$$

- $X_{T}, \alpha_{T}, \beta_{T}$ are true
- $\hat{y}_{*}: \bar{y} 1_{n}+X_{\gamma *} \hat{\beta}_{\gamma *}, X_{\gamma *}$: selected
- $\hat{\beta}_{\gamma^{*}}$: selected Bayes estimator in BC, ZE, EB
- $\hat{\beta}_{\gamma *}$: selected LSE in AIC, BIC, AICc
$N=500$
smaller is better

	cor	simple	cor	simple
oracle	$17 / 30(\simeq 0.57)$	$17 / 30$	$13 / 30(\simeq 0.43)$	$13 / 30$
BF	0.70	0.57	0.52	0.45
ZE	1.02	0.66	0.59	0.45
EB	$\mathbf{1 6}$	1.00	0.65	$\mathbf{1 2}$
AIC	0.56	0.56	0.58	0.45
AICc	1.29	0.98	0.54	0.54
BIC	0.58	0.56	0.56	0.46
oracle	$9 / 30(=0.3)$	0.30	$5 / 30(\simeq 0.17)$	0.17
BF	0.37	0.35	0.26	0.25
ZE	0.41	0.34	0.27	0.24
EB	$\mathbf{8}$	0.41	0.35	4
AIC	0.51	0.51	0.27	0.25
AICc	0.42	0.39	0.48	0.48
BIC	0.46	0.45	0.36	0.35

Table: The in-sample predictive error (mean)

Numerical experiments

- 14 true regressors $x_{1}, x_{2}, \ldots, x_{10}, x_{11}, x_{12}, x_{14}, x_{15}$
- $n=12 \Rightarrow n<q_{T}<p$ case
- non-identifiable model is true
- there is no competitors in ZE, EB, AIC, BIC, AICc
- The true model could not get the top at all frequency of number of regressors of the selected model: identifiable model is always selected

	$0-7$	$8-9$	$10-11$	$12-16$
correlated	0.21	0.56	0.23	0
simple	0.26	0.54	0.20	0

Numerical experiments

the frequency of each regressors of the selected model among $N=500$.

	$x_{1}(T)$	$x_{2}(T)$	$x_{3}(T)$	$x_{4}(T)$	$x_{5}(T)$	$x_{6}(T)$
correlated	0.67	0.61	0.43	0.47	0.63	0.59
simple	0.54	0.54	0.54	0.54	0.54	0.57
	$x_{7}(\mathrm{~T})$	$x_{8}(\mathrm{~T})$	$x_{9}(\mathrm{~T})$	$x_{10}(\mathrm{~T})$	$x_{11}(\mathrm{~T})$	$x_{12}(\mathrm{~T})$
correlated	0.56	0.56	0.59	0.58	0.58	0.60
simple	0.55	0.55	0.54	0.56	0.52	0.50
	$x_{13}(\mathrm{~F})$	$x_{14}(\mathrm{~T})$	$x_{15}(\mathrm{~T})$	$x_{16}(\mathrm{~F})$		
correlated	0.40	0.41	0.47	0.40		
simple	0.34	0.54	0.58	0.39		

- averagely the true variables are selected more often

Where is the true model?

- the average of rank of each sub-models
- the true model is the top with respect to the average of ranks both in correlated case and in simple structure case
- (the average of rank of the true model) $/ 2^{16}$ is about 0.03
- Although our criterion has an ability to find a true model averagely, a smaller identifiable model is selected as the best

Where is the true model?

- The frequency of the true model among $(16 \times 15) / 2=120$ candidates whose number of regressors is 14

	1st	1st-2nd	1st-3rd
correlated	0.14	0.22	0.26
simple	0.13	0.20	0.26

- Not bad!! If the true number of regressors is given, the analytical criterion $\overline{\operatorname{sv}}\left[X_{\gamma}\right] \times\left\|\hat{\beta}_{L S E}^{M P}[\gamma]\right\|$ works
- To our knowledge, there was no analytical criterion which is available when the number of regressors are the same and $R^{2}=1$.

Numerical experiment (findings)

- We assumed equal model space prior probability $\operatorname{Pr}\left(\mathcal{M}_{\gamma}\right)=2^{-p}$
- Under the equal model space prior probability, the submodel which has identifiability is selected.
- When the larger (non-identifiable, non-sparse) model is expected, unequal model space prior probability may lead a choice of such a non-sparce reasonable sub-model
- $\operatorname{Pr}\left(\mathcal{M}_{\gamma}\right)=w^{q_{\gamma}}(1-w)^{p-q_{\gamma}}$
- $\operatorname{Pr}\left(\mathcal{M}_{\gamma}\right) \propto B\left(\alpha+q_{\gamma}, \beta+p-q_{\gamma}\right)$
- We just started considering this issue,,,

Introduction

Priors

Sketch of the calculation of the marginal density

The estimation after selection

Model selection consistency

Numerical experiments

Summary and Future work

Summary and Future work

Summary

- BF with a beautiful closed form
- consistency for large n and fixed p
- very good numerical performance when $n>p$
- reasonable estimator of $X \beta$ after selection

Future Work

- find a reasonable unequal model space prior probability
- Comparison with some famous methods including elastic-net

FYI
The older version of our paper is in Arxiv.

