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Overview: Our recommendable Bayes factor
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if qγ ≤ n − 2

I A criterion based on full Bayes

I but we need no MCMC

I An exact closed form by using a special prior

I applicable for p > n as well as n > p

I model selection consistency and good numerical
performance
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Full model

I Y |{α, β, σ2} ∼ Nn(α1n + Xβ, σ2I )

I α: an intercept parameter

I 1n = (1, 1, . . . , 1)′

I X = (X1, . . . , Xp): an n × p standarized design
matrix rank X = min(n − 1, p)

I β: a p × 1 vector of unknown coefficients

I σ2: an unknown variance

Since there is usually a subset of useless regressors in
the full model, we would like to choose a good
sub-model with only important regressors.



Submodel

I submodel Mγ

Y |{α, βγ, σ
2} ∼ Nn(α1n + Xγβγ, σ

2I )

I Assume the intercept is always included

I Xγ: the n × qγ matrix, rank Xγ = min(n − 1, qγ)
columns = the γth subset of X1, . . . , Xp

I βγ: a qγ × 1 vector of unknown regression
coefficients

I qγ: the number of regressors of Mγ

I The null model: The special case of sub-model

MN : Y |{α, σ2} ∼ Nn(α1n, σ
2I )



Variable selection in the Bayesian framework

I It entails the specification of prior

I on the models Pr(Mγ)
I on parameters p(α, βγ, σ

2) of each model

I Assumption: equal model space probability

Pr(Mγ) = Pr(Mγ′) for any γ 6= γ′

I Choose Mγ as the best model which maximizes

posterior prob. Pr(Mγ|y) =
mγ(y)∑
γ mγ(y)

I mγ(y): the marginal density under Mγ

larger mγ(y) is better!



Variable selection in the Bayesian framework

I the marginal density

mγ(y) =

∫∫∫
py(y |α, βγ, σ

2)p(α, βγ, σ
2)dαdβγdσ2

I Recall that we consider Full Bayes method, which
means the joint prior density p(α, βγ, σ

2) does not
depend on data unlike Empirical Bayes method.

I Bayes factor is often used for expression of
Pr(Mγ|y)

Pr(Mγ|y) =
BF(Mγ;MN)∑
γ BF(Mγ;MN)

where BF(Mγ;MN) =
mγ(y)

mN(y)
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Priors

I The form of our joint density

p(α, βγ, σ
2) = p(α) p(σ2) p(β|σ2)

= 1 × σ−2 ×
∫

p(β|g , σ2)p(g)dg

I 1× σ−2: a popular non-informative prior

I improper but justificated because α and σ2 are
included in all submodels

I p(β|g , σ2) and p(g)



The original Zellner’s g -prior

I prior of regression coefficients

I Zellner’s (1986) g -prior is popular

pβγ
(βγ|σ2, g) = Nqγ

(0, gσ2(X ′
γXγ)

−1)

I It is applicable for the traditional situation p + 1 < n
⇒ qγ + 1 < n for any Mγ

I There are many papers which use g -priors including
George and Foster (2000, Biometrika) and Liang et
al. (2008, JASA)



The beauty of the g -prior

I The marginal density of y given g and σ2

exp

(
g

g + 1

{
max
α,βγ

log p(Y |α, βγ, σ
2)− qγ

2

g + 1

g
log(g + 1)

})
I Under known σ2,

g−1(g + 1) log(g + 1) = 2, or log n

leads to AIC by Akaike (1974) and BIC by Schwarz
(1978) respectively

I several studies: how to choose g based on non-full
Bayesian method



Many regressors case (p > n)

I In modern statistics, treating (very) many regressors
case (p > n) becomes more and more important

I the original Zellner’s g -prior is not available

I R2 is always 1 in the case where qγ ≥ n − 1
⇒ naive AIC and BIC methods do not work

I When we do not use the original g -prior, Bayesian
method is available in many regressors case

for example β ∼ N(0, σ2λI )

I inverse-gamma conjugate prior for σ2 are also
available



Many regressors case (p > n)

I The integral with respect to λ still remains in mγ(y)
as long as the full Bayes method is considered.

I Needless to say, it should be calculated by numerical
methods like MCMC or by approximation like
Laplace method.

I We do not have comparative advantage in numerical
methods,,,,,

I We like exact analytical results very much.



A variant of Zellner’s g -prior

I a special variant of g -prior which enables us to

I not only calculate the marginal density
analytically (closed form!!)

I but also treat many regressors case

I [KEY] singular value decomposition of Xγ

Xγ = UγDγW
′
γ =

r∑
i=1

di [γ]ui [γ]w ′
i [γ]

I r : rank of X = min(qγ, n − 1)

I the n − 1 is from “X is the centered matrix”

I singular values d1[γ] ≥ · · · ≥ dr [γ] > 0



A special variant of g -prior

pβ(β|g , σ2) =


∏n−1

i=1 pi(w
′
i β|g , σ2)×

arbitrary︷ ︸︸ ︷
p#(W ′

#β)

if q ≥ n∏q
i=1 pi(w

′
i β|g , σ2) if q ≤ n − 1

pi(·|g , σ2) = N(0,
σ2

d2
i

{νi(1 + g)− 1})

W#: a q × (q − r) matrix from the orthogonal
complement of W

c.f. original g -prior pβ(β|g , σ2) =

q∏
i=1

pi(w
′
i β|g , σ2) if q ≤ n − 1

pi(·|g , σ2) = N(0, g
σ2

d2
i

)



A special variant of g -prior

I ν1, . . . , νr (νi ≥ 1) where r = min{n − 1, q}
hyperparameters we have to fix

I q ≤ n − 1 ⇒ (Z ′Z )−1 exists
ν1 = · · · = νq = 1 ⇒ the original Zellner’s prior

I the descending order ν1 ≥ · · · ≥ νr like

νi = d2
i /d2

r (our recommendation)

for 1 ≤ i ≤ r is reasonable for our purpose

I numerical experiment and the estimation after
selection support the choice
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Sketch of the calculation of the marginal density

I we have prepared all of priors except for g (we will
give a prior of g later)

I the marginal density of y given g
= the marignal density after the integration

w.r.t. α, β, σ2

mγ(y |g) = C (n, y)
{
(g + 1)(1− R2

γ) + GR2
γ

}−(n−1)/2

× (1 + g)−r/2+(n−1)/2∏r
i=1 ν

1/2
i

where GR2
γ means the “generalized” R2

γ

GR2
γ =

r∑
i=1

(u′i{y − ȳ1n})2

νi‖y − ȳ1n‖2



Many regressors case

I rank of X = r = n − 1, R2
γ = 1

I mγ(y |g) does not depend on g

mγ(y) = mγ(y |g) = C (n, y)
∏n−1

i=1 ν
−1/2
i

(
GR2

γ

)−(n−1)/2

I If ν1 = · · · = νn−1 = 1, GR2
γ just becomes 1 and

hence mγ(y) = C (n, y)

I it does not work for model selection because it
always takes the same value in many regressors case

I That is why the choice of ν is important.



few regressors case (q ≤ n − 2)

I pg(g) = {B(a + 1, b + 1)}−1gb(1 + g)−a−b−2

I it is proper if a > −1 and b > −1
I Liang et al (2008, JASA) “hyper-g priors” b = 0

pg (g) = (a + 1)−1(g + 1)−a−2

I b = (n − 5− r)/2− a is for getting a closed simple
form of the marginal density

I −1 < a < −1/2 is for well-defining the marginal
density of every sub-model

I The median a = −3/4 is our recommendation



Sketch of the calculation of the marginal density

I When b = (n − 5)/2− r/2− a, the beta function
takes the integration w.r.t. g∫

mγ(y |g)p(g)dg

=
C (n, y)B(q/2 + a + 1, b + 1)(1− R2

γ + GR2
γ)

−(n−1)/2+b+1∏r
i=1 ν

1/2
i B(a + 1, b + 1)(1− R2

γ )b+1

I When b 6= (n − 5)/2− r/2− a, there remains an
integral with R2

γ and GR2
γ in mγ(y)

⇒ the need of MCMC or approximation

I Liang et al (2008, JASA) b = 0, ν1 = · · · = νr = 1
the Laplace approximation



Our recommendable BF

I After insertion of our recommendable
hyperparameters a = −3/4, b = (n− 5)/2− r/2− a
and νi = d2

i /d2
r

Our criterion BF[Mγ;MN ]= mγ(y)/mN(y) becomes

{
sv[Xγ]× ‖β̂MP
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if qγ ≤ n − 2

I It is exactly proportional to the posterior probability
I based on fundamental aggregated information of y

and Xγ



Our recommendable BF

I β̂LSE [γ]: the normal LSE

I β̂MP
LSE [γ]: the LSE using the Moore-Pennrose inverse

matrix of Xγ

β̂MP
LSE [γ] =

∑n−1
i=1

wi [γ]u′i [γ](y−ȳ1n)
di [γ]‖y−ȳ1n‖ =

X−
γ (y−ȳ1n)

‖y−ȳ1n‖

I sv[Xγ]: the geometric mean of the singular values of
Xγ

sv[Xγ] =

{
r∏

i=1

di [γ]

}1/r

one of the most important scalar of design matrix X



Interpretation of many regressors case

I β̂MP
LSE [γ]: the minimizer of ‖β‖ among the solutions

of the equation
y − ȳ1n

‖y − ȳ1n‖
= Xγβ

under each submodel Mγ

I ‖β̂MP
LSE [γ]‖ itself is not comparable beyond the

submodel

I sv[Xγ]× ‖β̂MP
LSE [γ]‖ is comparable

I the smallest sv[Xγ]× ‖β̂MP
LSE [γ]‖ means the best

among the submodels Mγ which satisfies qγ ≥ n− 1
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The estimation after selection

I In order to avoid the identifiability when n < q, we
consider the estimator of Xβ

X β̂BAYES =

min(q,n−1)∑
i=1

(u′iv)ui

{
1− E [(1 + g)−1|y ]

νi

}

X β̂LSE =

min(q,n−1)∑
i=1

(u′iv)ui

I u1: the normalized first principal component

I
...

...
...

...

I umin(q,n−1): the normalized last principal component



The estimation after selection

I The descending order ν1 ≥ · · · ≥ νmin(q,n−1) is
reasonable

I less important components get shrunk more!

I See Hastie, Friedman, Tibshirani’s book.

I On the other hand, the original Zellner’s g -prior
cannot make such a reasonable effect{

1− E [(1 + g)−1|y ]
}

X β̂LSE

I This effect supports the descending order of ν
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Model selection consistency

I the case where p is fixed and n is large

I Definition

plimnp(Mγ|y) = 1 if Mγ is the true model

I A standard assumption: ∃ p.d. matrix Hγ s.t.

lim
1

n
X ′

γXγ = Hγ

I Our criterion has model selection consistency!
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Numerical experiments

possible regressors p = 16
correlated case

cor=0.9︷ ︸︸ ︷
x1, x2 , x3, x4︸ ︷︷ ︸

cor=−0.7

,
cor=0.5︷ ︸︸ ︷
x5, x6 , x7, x8︸ ︷︷ ︸

cor=−0.3

∼ N(0, 1)

cor=0.1︷ ︸︸ ︷
x9, x10 , x11, x12, x13 ∼ N(0, 1), x14, x15, x16 ∼ U(−1, 1)

simple case x1, . . . , x16 ∼ N(0, 1)



Numerical experiments

n = 30 (hence so called n > p case)

4 true models

Y = 1 + 2
∑

i∈{true}

xi + {normal error term N(0, 1)}

I full model (qT = 16)

I x1, . . . , x10, x11, x14 (qT = 12)

I x1, x2, x5, x6, x9, x10, x11, x14 (qT = 8)

I x1, x2, x5, x6 (qT = 4)



Numerical experiments

competitors of our BF

AIC = −2×max. log likelihood + 2(q + 2)

AICc = −2×max. log likelihood + 2(q + 2)
n

n − q − 3

BIC = −2×max. log likelihood + q log n

ZE: BF[Mγ;MN ] with a = −3/4, ν1 = · · · = νq = 1
(the effect of descending order ν)

EB: empirical Bayes criterion: George and Foster (2000)

max
g

mγ(y |g , σ̂2) σ̂2 = RSS/(n − q − 1)

(the effect of full Bayes)



N = 500 bigger is better

cor simple cor simple

BF 0.71 0.98 0.73 0.86
ZE 0.40 0.94 0.63 0.87
EB 16 0.41 0.95 12 0.63 0.87
AIC 0.95 1.00 0.23 0.22
AICc 0.25 0.82 0.67 0.85
BIC 0.88 0.99 0.41 0.41

BF 0.69 0.77 0.66 0.68
ZE 0.68 0.78 0.67 0.69
EB 8 0.67 0.76 4 0.66 0.65
AIC 0.09 0.08 0.05 0.05
AICc 0.52 0.55 0.25 0.24
BIC 0.31 0.27 0.23 0.22

Table: Frequency of the top of the true model



Numerical experiments (findings)

I [correlated and simple] AIC and BIC are too bad for
all except qT = 16.

I [correlated and simple] AICc is bad for
qT = 16 and 4 while it is good for qT = 8, 12.

I [simple] BF, ZE and EB are very similar. There is
no effect of the extention of Zellner’s g -prior with
descending ν.

I [correlated] EB, ZE and BF are very similar for
qT = 4, 8, but BF is much better for q = 12, 16.

In summary, our BF is the best for most case and
extremely stable. The extention of Zellner’s g -prior with
descending ν is quite effective.



Numerical experiments

(in-sample) predictive error of selected model

(ŷ∗ − αT1n − XTβT )′(ŷ∗ − αT1n − XTβT )

nσ2

I XT , αT , βT are true

I ŷ∗: ȳ1n + Xγ∗β̂γ∗, Xγ∗: selected

I β̂γ∗: selected Bayes estimator in BC, ZE, EB

I β̂γ∗: selected LSE in AIC, BIC, AICc



N = 500 smaller is better

cor simple cor simple

oracle 17/30('0.57) 17/30 13/30('0.43) 13/30
BF 0.70 0.57 0.52 0.45
ZE 1.02 0.66 0.59 0.45
EB 16 1.00 0.65 12 0.58 0.45
AIC 0.56 0.56 0.54 0.54
AICc 1.29 0.98 0.56 0.46
BIC 0.58 0.56 0.53 0.52

oracle 9/30(=0.3) 0.30 5/30('0.17) 0.17
BF 0.37 0.35 0.26 0.25
ZE 0.41 0.34 0.27 0.24
EB 8 0.41 0.35 4 0.27 0.25
AIC 0.51 0.51 0.48 0.48
AICc 0.42 0.39 0.36 0.35
BIC 0.46 0.45 0.39 0.38

Table: The in-sample predictive error (mean)



Numerical experiments

I 14 true regressors x1, x2, . . . , x10, x11, x12, x14, x15

I n = 12 ⇒ n < qT < p case

I non-identifiable model is true

I there is no competitors in ZE, EB, AIC, BIC, AICc

I The true model could not get the top at all

frequency of number of regressors of the selected model:
identifiable model is always selected

0-7 8-9 10-11 12-16

correlated 0.21 0.56 0.23 0
simple 0.26 0.54 0.20 0



Numerical experiments

the frequency of each regressors of the selected model
among N = 500.

x1 (T) x2 (T) x3 (T) x4 (T) x5 (T) x6 (T)

correlated 0.67 0.61 0.43 0.47 0.63 0.59
simple 0.54 0.54 0.54 0.54 0.54 0.57

x7 (T) x8 (T) x9 (T) x10 (T) x11 (T) x12 (T)

correlated 0.56 0.56 0.59 0.58 0.58 0.60
simple 0.55 0.55 0.54 0.56 0.52 0.50

x13 (F) x14 (T) x15 (T) x16 (F)

correlated 0.40 0.41 0.47 0.40
simple 0.34 0.54 0.58 0.39

I averagely the true variables are selected more often



Where is the true model?

I the average of rank of each sub-models

I the true model is the top with respect to the average
of ranks both in correlated case and in simple
structure case

I (the average of rank of the true model)/216 is about
0.03

I Although our criterion has an ability to find a true
model averagely, a smaller identifiable model is
selected as the best



Where is the true model?

I The frequency of the true model among
(16× 15)/2 = 120 candidates whose number of
regressors is 14

1st 1st-2nd 1st-3rd

correlated 0.14 0.22 0.26
simple 0.13 0.20 0.26

I Not bad!! If the true number of regressors is given,
the analytical criterion sv[Xγ]× ‖β̂MP

LSE [γ]‖ works

I To our knowledge, there was no analytical criterion
which is available when the number of regressors are
the same and R2 = 1.



Numerical experiment (findings)

I We assumed equal model space prior probability
Pr(Mγ) = 2−p

I Under the equal model space prior probability, the
submodel which has identifiability is selected.

I When the larger (non-identifiable, non-sparse) model
is expected, unequal model space prior probability
may lead a choice of such a non-sparce reasonable
sub-model

I Pr(Mγ) = w qγ(1− w)p−qγ

I Pr(Mγ) ∝ B(α + qγ, β + p − qγ)

I We just started considering this issue,,,
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Summary and Future work

Summary

I BF with a beautiful closed form

I consistency for large n and fixed p

I very good numerical performance when n > p

I reasonable estimator of Xβ after selection

Future Work

I find a reasonable unequal model space prior
probability

I Comparison with some famous methods including
elastic-net

FYI
The older version of our paper is in Arxiv.
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