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— Let Xq,..., Xy bei.i.d. with completely un-
known law P on R.

: _ -1
— Define also P, = n~ "L, dx,, the mea-
sure consisting of point masses at the obser-
vations ("empirical measure’).



— We want to find ’'data-driven’ functions
T(y, X1,...,Xn), yv € R, that optimally esti-
mate

(A) the distribution function F(y) = [Y_ dP(x);

(B) its density function f(y) = d%F(y);

in sup-norm loss on the real line.



Case (A): A classical minimax result is

liminfinfsup \fEsup|Tn(y) F(y)| > c> 0.
n Tn F yE

— T he natural candidate for T}, is the sample
cdf Fp(y) = [Y,, dPy(t), which is an efficient
estimator of F' in £°°(R).

Case (B): If f is contained in some Holder
space C*(R) with norm || - ||+, then one has

4
limy, inf sup < - >(2t+1)EIITn—f||och(D)>O
To ||f]l<D \log n



— Clearly, the step function Fj, cannot be
used to estimate the density f of F.

— Can one outperform F, as an estimator
for F' in the sense that differentiable F' can
be estimated without knowing a priori that
F is smooth?

— Somewhat suprisingly maybe, the answer
IS yes.



Theorem 1 (Giné, Nickl (2008, PTRF))
Let X1,..., Xy bei.i.d. on R with unknown law
P. Then there exists a purely-data driven
estimator Fj,(s) that satisfies

Furthermore, if P has a density f € C!(R)
for some 0 <t <T < oo (where T is arbitrary

but fixed), then E;, has a density f, with pr.
approaching one, and

R | t/(2t+1)
sup  Esup|fn(y)—f(y)| =0 (( Ogn) ) :

Fflle<D  yeR




— T his estimator can be explicitly written
down (it is a nonlinear estimator based on
kernel estimators with adaptive bandwidth
choice), and we refer to the paper for de-
tails. Questions:

A) Can (and should) the estimator Fj be
implemented in practice?

B) Can one obtain reasonable asymptotic
or even nonasymptotic risk bounds for the
adaptive convergence rates? To which ex-
tent is this phenomenon purely asymptotic?



— To (partially) answer these questions, wavelets
turned out to be more versatile than kernels.
If ¢, v are father and mother wavelet and if

iy, = Z o(X—k), B = & S © Y 222X ),

z—l
then, for j € N, the (linear) wavelet density
estimator is, with vy, = 2¢/2¢(2% — k),

2V (y,5) = Zak¢(y k) + Z > Boxer ().

(=0 k



— This estimator is a projection of the em-
pirical measure P,, onto the space Vj spanned
by the associated wavelet basis functions at
resolution level 3. If ¢,v are the Battle-
Lemarié wavelets, this corresponds to a pro-
jection onto the classical Schoenberg spaces
spanned by (dyadic) B-splines.

— It was shown in Giné and Nickl (2007): If
2Jn ~ (n/log n)l/(2t+1)
and if f € CY(R), then

Esup|f¥ () — f(u)| = O ((n/ log n)/ CHD)
yeR



and, if FV(s) := [ fV(y)dy, that

Vi(EY = F) ~ o) Gp.

— However, this is of limited practical impor-
tance, since f € CY(R) is rarely known, and
hence the choice 2/n ~ (n/logn)l/(2t+1) s
not feasible.

— A natural way to choose the resolution
level 5, is to perform some model selection
procedure on the sequence of nested spaces
(or 'candidate models’) V;.



HARD THRESHOLDING

The hard thresholding wavelet density es-
timator introduced by Donoho, Johnstone,
Kerkyacharian and Picard (1996) is

) = aroly — k)+
k

Jjo—1 J1—1
> Buwer(w)+ D> Zﬁﬁkl[w |>z7]¢£k(y)
(=0 k =30 k

where j1 ~ n/logn and jg — oo depending
on the maximal smoothness up to which one
wants to adapt.



Theorem 2 (Giné-Nickl (2007),Thm 8)

For a (reasonable) choice of 7, and under
a moment assumption of arbitrary order on
f € Ct(R), one can prove Theorem 1 with Fj,
the hard thresholding estimator.

— T his already gives an answer to the first
question, since the hard thresholding estima-
tor can be implemented without too much
difficulties.



LEPSKI's METHOD

— In the model selection context, Lepski’'s
(1991) method can be briefly described as
follows:

a) Start with the smallest model Vi iny COM-
pare it to a nested sequence of larger models

{Vj}a jmin < 7 < Jmax
b) choose the smallest j for which all rele-
vant blocks of wavelet coefficients between

4 and jmax are insignificant as compared to
a certain threshold.



Formally, if J is the set of candidate resolu-
tion levels between jqnin and jmax, we define
Jn as

min {] cJ | f}j[/(])—f?‘{v(l)“oo < Tn,j,l V> g,le j}?

where 1), ;; is a threshold discussed later.

— Note that, unlike hard thresholding pro-
cedures, Lepski's method does not discard
irrelevant blocks at resolution levels that are
smaller than 7.



— T he crucial point is of course the choice
of the threshold Tnd-’l. The general principle
behind Lepski's proof is that one needs a
sharp estimate for the 'variance-term’ of the
linear estimator underlying the procedure.

— In the i.i.d. density model on R with sup-
norm 10ss, this means that one needs ex-
act exponential inequalities (involving con-
stants!) for

yeR



— In the Gaussian white noise model of-
ten assumed in the literature, exponential in-
equalities are immediate. Tsybakov (1998)
for example works with a trigonometric ba-
Sis and ends up with a stationary Gaussian
process, and then one has the Rice formula
at hand.

— Otherwise, one needs empirical processes:
Talagrand's (1996) inequality, with sharp con-
stants (Massart (2000), Bousquet (2003),
Klein and Rio (2005)) can be used here.



— To apply Talagrand’s inequality, one needs
sharp moment bounds for suprema of em-
pirical processes. The constants in these in-
equalities (Talagrand (1994), Einmahl and
Mason (2000), Giné and Guillou (2001), Giné
and Nickl (2007)) are not useful in adaptive
estimation.

— To tackle this problem, we adapt an idea
from machine learning due to KoltchinsKkii
(2001, 2006), Bartlett, Boucheron and Lu-
gosi (2002)), and use Rademacher processes.



— The following symmetrization inequality
is well known: If g;'s are i.i.d. Rademacher
variables independent of the sample, then

n
F =1 F
and ther.h.s. can be estimated by the (supre-
mum of the) " Rademacher-process”

E

> (f(Xi) - Pf)
i=1

n
Z ng(XZ) )
1=1 F
which is 'purely data-driven’ and concentrates
(again by Talagrand) in a " Bernstein - way"
nicely around its expectation.




— In our setup, if
Kij(z,y) = 2lp(2lc — k)p(2ly — k)
k

is a wavelet projection kernel, and if ¢; are
I.i1.d. Rademachers, we set

1 n
— Z €iKl(Xi7y)
=1

R(n,l) = 2sup
yeR

— We choose the threshold (||®]|» is a con-
stant that depends only on ¢):

2l
T(n,5.0) = R(n, D+ 7 ®ll2]lpn Gma) 137 =~



Theorem 3 (GN 2008) Let X4q,..., X, be
i.i.d. on R with common law P and uniformly
continuous density f. Let

Fn(s) :/_SOO ﬁg‘/(y,}n)dy
Then
Vn (Fn — F) v poo(R) GP-

If, in addition, f € C/(R) for some 0 <t < r
then also

) ) o t/(2t+1)
sup Esup|fyY (y,jn)—f@)| = O ( gn)
Fllfle<D  yeR "




— The following theorem uses the previous
proof, as well as the exact almost sure law of
the logarithm for wavelet density estimators
(GN (2007)).

Theorem 1 Let the conditions of Theorem
3 hold. Then, if f € C/(R) forsome0 <t <1,
and if ¢ is the Haar wavelet, we have

< n )t/(2t—|—1)

lim sup EllfY Gn)—flloo < A(po)
n logn

where

A 26.6 L ; i
(o) = 26.6 | 5ios i s I Il



— For example if t =1,

A(po) < 20| fII23 1D fIIAL3.

— T he best possible constant in the minimax
risk is derived in Korostelev and Nussbaum
(1999) for densities supported in [0,1], and
our bound misses the one there by ~ 20.

— Some loss of efficiency in the asymptotic
constant of any adaptive estimator is to be
expected in our estimation problem, cf. Lep-
ski (1992) and also Tsybakov (1998).



— Our loss is still above that level. The rea-
son behind this is most likely linked to the
constant 2 in the Rademacher symmetriza-
tion inequality. Note though that without
Rademacher symmetrization, one would in-
flate the constants by a factor of roughly
500.

— For densities that attain a critical Holder
singularity (e.g., Jaffard (1999)), one can
also obtain finite-sample oracle inequalties in
sup-norm. Let



: W _ We - HY

Proposition 1 Suppose f € C1(R) or assume
f e Ct(R) for some 0 <t < 1 but f ¢ CtT(R)
for any 6 > 0. Then, for every n,

52 W H
E — S lloo

log n>2t/(2t—|—1))

EfY Gn)—flloo <

n

+0(n"2) + 0 ((



The constant W(l, f) depends on the oscil-
lation of the density at the point where it is
least smooth. If a critical Holder singularity
is attained, W (I, f) — 0.5. If f is 'self-similar’
in the sense that

sup | By, (po)| > 27 1EHL/2)4 (1)
k

for some positive function w(l), one can ob-
tain simple lower bounds for W (l,pg). It is an
interesting question whether such conditions
are necessary?
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