
Adaptive Estimation of the

Distribution Function and its

Density in Sup-Norm Loss
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→ Let X1, ..., Xn be i.i.d. with completely un-

known law P on R.

→ Define also Pn = n−1∑n
i=1 δXi, the mea-

sure consisting of point masses at the obser-

vations (’empirical measure’).



→ We want to find ’data-driven’ functions

T (y,X1, ..., Xn), y ∈ R, that optimally esti-

mate

(A) the distribution function F (y) =
∫ y
−∞ dP (x);

(B) its density function f(y) = d
dyF (y);

in sup-norm loss on the real line.



Case (A): A classical minimax result is

lim inf
n

inf
Tn

sup
F

√
nE sup

y∈R
|Tn(y)− F (y)| ≥ c > 0.

→ The natural candidate for Tn is the sample

cdf Fn(y) =
∫ y
−∞ dPn(t), which is an efficient

estimator of F in `∞(R).

Case (B): If f is contained in some Hölder

space Ct(R) with norm ‖ · ‖t, then one has

limn inf
Tn

sup
‖f‖t≤D

(
n

logn

) t
(2t+1)

E‖Tn−f‖∞ ≥ c(D) > 0



→ Clearly, the step function Fn cannot be

used to estimate the density f of F .

→ Can one outperform Fn as an estimator

for F in the sense that differentiable F can

be estimated without knowing a priori that

F is smooth?

→ Somewhat suprisingly maybe, the answer

is yes.



Theorem 1 (Giné, Nickl (2008, PTRF))

Let X1, ..., Xn be i.i.d. on R with unknown law

P . Then there exists a purely-data driven

estimator F̂n(s) that satisfies

√
n
(
F̂n − F

)
 `∞(R) GP .

Furthermore, if P has a density f ∈ Ct(R)

for some 0 < t ≤ T <∞ (where T is arbitrary

but fixed), then F̂n has a density f̂n with pr.

approaching one, and

sup
f :‖f‖t≤D

E sup
y∈R
|f̂n(y)−f(y)| = O

(logn

n

)t/(2t+1)
 .



→ This estimator can be explicitly written

down (it is a nonlinear estimator based on

kernel estimators with adaptive bandwidth

choice), and we refer to the paper for de-

tails. Questions:

A) Can (and should) the estimator F̂n be

implemented in practice?

B) Can one obtain reasonable asymptotic

or even nonasymptotic risk bounds for the

adaptive convergence rates? To which ex-

tent is this phenomenon purely asymptotic?



→ To (partially) answer these questions, wavelets

turned out to be more versatile than kernels.

If φ, ψ are father and mother wavelet and if

α̂k =
1

n

n∑
i=1

φ(Xi−k), β̂`k =
1

n

n∑
i=1

2`/2ψ(2`Xi−k),

then, for j ∈ N, the (linear) wavelet density

estimator is, with ψ`k = 2`/2ψ(2`x− k),

fWn (y, j) =
∑
k

α̂kφ(y − k) +
j−1∑
`=0

∑
k

β̂`kψ`k(y).



→ This estimator is a projection of the em-
pirical measure Pn onto the space Vj spanned
by the associated wavelet basis functions at
resolution level j. If φ, ψ are the Battle-
Lemarié wavelets, this corresponds to a pro-
jection onto the classical Schoenberg spaces
spanned by (dyadic) B-splines.

→ It was shown in Giné and Nickl (2007): If

2jn ' (n/ logn)1/(2t+1)

and if f ∈ Ct(R), then

E sup
y∈R
|fWn (y)− f(y)| = O

(
(n/ logn)t/(2t+1)

)



and, if FWn (s) :=
∫ s
−∞ f

W
n (y)dy, that

√
n(FWn − F ) `∞(R) GP .

→ However, this is of limited practical impor-

tance, since f ∈ Ct(R) is rarely known, and

hence the choice 2jn ' (n/ logn)1/(2t+1) is

not feasible.

→ A natural way to choose the resolution

level jn is to perform some model selection

procedure on the sequence of nested spaces

(or ’candidate models’) Vj.



HARD THRESHOLDING

The hard thresholding wavelet density es-
timator introduced by Donoho, Johnstone,
Kerkyacharian and Picard (1996) is

fTn (y) =
∑
k

α̂kφ(y − k)+

j0−1∑
`=0

∑
k

β̂`kψ`k(y)+
j1−1∑
`=j0

∑
k

β̂`k1
[|β`k|> lτ√

n
]
ψ`k(y),

where j1 ' n/ logn and j0 → ∞ depending
on the maximal smoothness up to which one
wants to adapt.



Theorem 2 (Giné-Nickl (2007),Thm 8)

For a (reasonable) choice of τ , and under

a moment assumption of arbitrary order on

f ∈ Ct(R), one can prove Theorem 1 with F̂n

the hard thresholding estimator.

→ This already gives an answer to the first

question, since the hard thresholding estima-

tor can be implemented without too much

difficulties.



LEPSKI’s METHOD

→ In the model selection context, Lepski’s

(1991) method can be briefly described as

follows:

a) Start with the smallest model Vjmin
; com-

pare it to a nested sequence of larger models

{Vj}, jmin ≤ j ≤ jmax

b) choose the smallest j for which all rele-

vant blocks of wavelet coefficients between

j and jmax are insignificant as compared to

a certain threshold.



Formally, if J is the set of candidate resolu-

tion levels between jmin and jmax, we define

ĵn as

min

{
j ∈ J : ‖ fWn (j)−fWn (l)‖∞ ≤ Tn,j,l ∀l > j, l ∈ J

}
,

where Tn,j,l is a threshold discussed later.

→ Note that, unlike hard thresholding pro-

cedures, Lepski’s method does not discard

irrelevant blocks at resolution levels that are

smaller than ĵn.



→ The crucial point is of course the choice

of the threshold Tn,j,l. The general principle

behind Lepski’s proof is that one needs a

sharp estimate for the ’variance-term’ of the

linear estimator underlying the procedure.

→ In the i.i.d. density model on R with sup-

norm loss, this means that one needs ex-

act exponential inequalities (involving con-

stants!) for

sup
y∈R
|fWn (y, j)− EfWn (y, j)|.



→ In the Gaussian white noise model of-

ten assumed in the literature, exponential in-

equalities are immediate. Tsybakov (1998)

for example works with a trigonometric ba-

sis and ends up with a stationary Gaussian

process, and then one has the Rice formula

at hand.

→ Otherwise, one needs empirical processes:

Talagrand’s (1996) inequality, with sharp con-

stants (Massart (2000), Bousquet (2003),

Klein and Rio (2005)) can be used here.



→ To apply Talagrand’s inequality, one needs

sharp moment bounds for suprema of em-

pirical processes. The constants in these in-

equalities (Talagrand (1994), Einmahl and

Mason (2000), Giné and Guillou (2001), Giné

and Nickl (2007)) are not useful in adaptive

estimation.

→ To tackle this problem, we adapt an idea

from machine learning due to Koltchinskii

(2001, 2006), Bartlett, Boucheron and Lu-

gosi (2002)), and use Rademacher processes.



→ The following symmetrization inequality
is well known: If εi’s are i.i.d. Rademacher
variables independent of the sample, then

E

∥∥∥∥∥∥
n∑
i=1

(f(Xi)− Pf)

∥∥∥∥∥∥
F
≤ 2E

∥∥∥∥∥∥
n∑
i=1

εif(Xi)

∥∥∥∥∥∥
F
,

and the r.h.s. can be estimated by the (supre-
mum of the) ”Rademacher-process”∥∥∥∥∥∥

n∑
i=1

εif(Xi)

∥∥∥∥∥∥
F
,

which is ’purely data-driven’ and concentrates
(again by Talagrand) in a ”Bernstein - way”
nicely around its expectation.



→ In our setup, if

Kl(x, y) =
∑
k

2lφ(2lx− k)φ(2ly − k)

is a wavelet projection kernel, and if εi are
i.i.d. Rademachers, we set

R(n, l) = 2 sup
y∈R

∣∣∣∣∣∣1n
n∑
i=1

εiKl(Xi, y)

∣∣∣∣∣∣ .
→ We choose the threshold (‖Φ‖2 is a con-
stant that depends only on φ):

T (n, j, l) = R(n, l)+7‖Φ‖2‖pn(jmax)‖1/2
∞

√
2ll

n
.



Theorem 3 (GN 2008) Let X1, ..., Xn be

i.i.d. on R with common law P and uniformly

continuous density f . Let

F̂n(s) =
∫ s
−∞

f̂Wn (y, ĵn)dy.

Then
√
n
(
F̂n − F

)
 `∞(R) GP .

If, in addition, f ∈ Ct(R) for some 0 < t ≤ r

then also

sup
f :‖f‖t≤D

E sup
y∈R
|f̂Wn (y, ĵn)−f(y)| = O

(logn

n

)t/(2t+1)




→ The following theorem uses the previous
proof, as well as the exact almost sure law of
the logarithm for wavelet density estimators
(GN (2007)).

Theorem 1 Let the conditions of Theorem
3 hold. Then, if f ∈ Ct(R) for some 0 < t ≤ 1,
and if φ is the Haar wavelet, we have

lim sup
n

(
n

logn

)t/(2t+1)
E‖fWn (ĵn)−f‖∞ ≤ A(p0)

where

A(p0) = 26.6

[
1√

2 log 2(1 + t)
‖f‖t∞‖f‖t

] 1
2t+1



→ For example if t = 1,

A(p0) ≤ 20‖f‖1/3
∞ ‖Df‖

1/3
∞ .

→ The best possible constant in the minimax

risk is derived in Korostelev and Nussbaum

(1999) for densities supported in [0,1], and

our bound misses the one there by ' 20.

→ Some loss of efficiency in the asymptotic

constant of any adaptive estimator is to be

expected in our estimation problem, cf. Lep-

ski (1992) and also Tsybakov (1998).



→ Our loss is still above that level. The rea-

son behind this is most likely linked to the

constant 2 in the Rademacher symmetriza-

tion inequality. Note though that without

Rademacher symmetrization, one would in-

flate the constants by a factor of roughly

500.

→ For densities that attain a critical Hölder

singularity (e.g., Jaffard (1999)), one can

also obtain finite-sample oracle inequalties in

sup-norm. Let



inf
j∈J

E‖fWn (j)− f‖∞ = E‖fWn (jH)− f‖∞.

Proposition 1 Suppose f ∈ C1(R) or assume

f ∈ Ct(R) for some 0 < t < 1 but f /∈ Ct+δ(R)

for any δ > 0. Then, for every n,

E‖fWn (ĵn)−f‖∞ ≤
52

W (jH , p0)
E‖fWn (jH)−f‖∞

+O(n−1/2) +O

(logn

n

)2t/(2t+1)
 .



The constant W (l, f) depends on the oscil-

lation of the density at the point where it is

least smooth. If a critical Hölder singularity

is attained, W (l, f)→ 0.5. If f is ’self-similar’

in the sense that

sup
k
|βlk(p0)| ≥ 2−l(t+1/2)w(l)

for some positive function w(l), one can ob-

tain simple lower bounds for W (l, p0). It is an

interesting question whether such conditions

are necessary?
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