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Sparse Estimators and the "Oracle" Property

Given is a parametric statistical model indexed by a parameter � 2 Rk. An
estimator �̂n for � is said to be sparse if for every � 2 Rk and i = 1; : : : ; k

lim
n!1Pn;�

�
�̂n;i = 0

�
= 1 whenever �i = 0.

Examples of sparse estimators (that are also consistent for �):

� Post-model-selection estimators based on a consistent model selection pro-
cedure.

� Thresholding estimators with suitable choice of threshold cn (typically
cn ! 0, n1=2cn !1).



Sparse Estimators and the "Oracle" Property (cont�d)

� Various penalized maximum likelihood (least squares) estimators (e.g.,
SCAD, LASSO, adaptive LASSO, certain Bridge estimators) for an ap-
propriate choice of the regularization parameter.

For many (but not all) estimators, sparsity implies the so-called "oracle" prop-
erty: That is, their (pointwise) asymptotic distribution coincides with the dis-
tribution of an infeasible "estimator" (the "oracle") that makes use of the zero
restrictions holding for the true parameter vector �. I.e., the estimator "adapts"
to the unknown zero restrictions.



A Simple Example

Y1; : : : ; Yn iid N(�; 1) and �̂n = �Y 1(
��� �Y ��� > cn) with cn ! 0 and n1=2cn !

1. This is Hodges�estimator. It is a post-model-selection estimator (hard-
thresholding) based on consistent selection between the unrestricted model
MU = R and the restricted model MR = f0g. Then �̂n is consistent for �
and satis�es the sparsity property:

lim
n!1Pn;�

�
�̂n = 0

�
= 1 whenever � = 0;

as well as the "oracle" (supere¢ ciency) property

n1=2(�̂n � �) d!
(
N(0; 1) � 6= 0
N(0; 0) � = 0

;

the "oracle" being the unrestricted MLE �̂(U) = �Y if � 6= 0, and the restricted
MLE �̂(R) = 0 if � = 0. This seems to say that �̂n is as good as the
unrestricted MLE if � 6= 0 and as good as the restricted MLE if � = 0.



A Simple Example (cont�d)

The "oracle" property suggests the following con�dence interval for �

Cn =

(
(�̂n � n�1=2z1��=2; �̂n + n�1=2z1��=2) if �̂n 6= 0

f0g if �̂n = 0
:

That, is Cn chooses between the standard con�dence intervals based on the
unrestricted and restricted MLE, respectively, depending on whether the model
selection procedure underlying �̂n chooses the unrestricted model MU = R or
the restricted model MR = f0g. Due to the "oracle" property, Cn satis�es

lim
n!1Pn;�(� 2 Cn) =

(
1� � for � 6= 0
1 for � = 0

)
� 1� � for every � 2 R.



Comments on the "Oracle" Property

A selection of recent papers establishing the "oracle" property for a variety of
estimators in (semi)parametric models:

Bunea (AS 2004), Bunea & McKeague (JMVA 2005)

Fan & Li (JASA 2001, AS 2002, JASA 2004), Zou (JASA 2006)

Wang & Leng (JASA 2007), Li & Liang (AS 2007)

Wang, G. Li, & Tsai (JRSS B 2007), Zhang & Li (BA 2007)

Wang, R. Li, & Tsai (BA 2007), Zou & Yuan (AS 2008), etc.



Comments on the "Oracle" Property (cont�d)

This literature views the "oracle" property as a desirable property of an esti-
mator as the "oracle" property seems to lead to a gain in e¢ ciency and to a
gain in the size of con�dence sets.

Zou & Yuan (AS 2008) call the "oracle" property a "gold standard for evaluating
variable selection and coe¢ cient estimation procedures".



Comments on the "Oracle" Property (cont�d)

However, nothing could be farther from the truth: Bad minimax risk behavior
of Hodges� estimator has been known for decades (e.g., Lehmann & Casella
(1998)). Furthermore, the "con�dence" set Cn constructed above, although
satisfying

lim
n!1Pn;�(� 2 Cn) =

(
1� � for � 6= 0
1 for � = 0

)
� 1� � for every � 2 R,

is dishonest in the sense that its minimal coverage probability satis�es

lim
n!1 inf

�2R
Pn;�(� 2 Cn) = 0

as pointed out by Beran (1992) and Kabaila (1995).

We establish general results of this sort for arbitrary con�dence sets based on
arbitrary sparse estimators in general (semi)parametric models.



Comments on the "Oracle" Property (cont�d)

These results complement results on bad minimax risk behavior of sparse esti-
mators in Yang (BA 2005) and Leeb &Pötscher (JE 2008); earlier minimax risk
results can be found in Hosoya (1984), Shibata (AIM 1986), Foster & George
(AS 1994).



Results

Assume the statistical experiment
n
Pn;� : � 2 Rk

o
satis�es for every  2 Rk

Pn;=
p
n is contiguous w.r.t. Pn;0: (1)

Let Cn be a random set in Rk "based" on the sparse estimator �̂n in the sense
that

Pn;�(�̂n 2 Cn) = 1 for every � 2 Rk. (2)

E.g., Cn = [�̂n � an; �̂n + bn] is a k-dimensional box centered at �̂n with
an; bn possessing only nonnegative coordinates.



Results (cont�d)

Theorem 1: Suppose Assumption (1) is satis�ed, �̂n is sparse, and Cn satis�es
(2). Let � denote the asymptotic minimal coverage probability of Cn, i.e.,

� = lim inf
n!1 inf

�2Rk
Pn;�(� 2 Cn).

Then for every t � 0

lim inf
n!1 sup

�2Rk
Pn;�(

p
n diam(Cn) � t) � �: (3)

More generally, for every t � 0 and every unit vector e 2 Rk

lim inf
n!1 sup

�2Rk
Pn;�(

p
n ext(Cn; �̂n; e) � t) � � (4)

where ext(Cn; �̂n; e) = supf� � 0 : �e+ �̂n 2 Cng.



Results (cont�d)

� Any con�dence set Cn based on a sparse estimator that has positive as-
ymptotic minimal coverage probability is necessarily larger by an order of
magnitude than the classical MLE based con�dence set which has diameter
� n�1=2. (If diamCn is nonrandom, then

p
n diamCn !1.)

� Con�dence sets Cn based on sparse estimators and constructed from the
"oracle" property, like the interval in the Hodges�estimator example, have
bounded

p
n diamCn. Hence, they have asymptotic minimal coverage

probability 0.



Results (cont�d)

� Extension to semiparametric models
n
Pn;�;� : � 2 Rk; � 2 T

o
and to con-

�dence sets for linear functions A� is simple.

� For particular classes of sparse estimators the results in (3) and (4) can be
strengthened.

� Assumption � = Rk not essential. Results hold as long as 0 is an interior
point of �.



Partially Sparse Estimators

Suppose now � = (�0; �0)0 where � is k� � 1, and the estimator �̂n for � is
partially sparse in the sense that for every � 2 Rk and i = 1; : : : ; k�

lim
n!1Pn;�

�
�̂n;i = 0

�
= 1 holds whenever �i = 0.

If Cn is a con�dence set for � based on �̂n, Theorem 1 (extended to semipara-
metric models) can be immediately applied to give a similar result. This is not
so if con�dence sets for � or A� (with this linear function also depending on
�) are considered.



Partially Sparse Estimators (cont�d)

Theorem 2: Suppose for some � 2 Rk�k� the sequence Pn;(�;=pn) is
contiguous w.r.t. Pn;(�;0) for every  2 R

k� . Let �̂n be partially sparse. Let
A = (A1; A2) be a q � k matrix of full row-rank satisfying rankA1 < q.
Suppose Cn is based on A�̂n (i.e., Pn;�(A�̂n 2 Cn) = 1 for every �). Let �
denote the asymptotic minimal coverage probability of Cn, i.e.,

� = lim inf
n!1 inf

�2Rk
Pn;�(A� 2 Cn).

Then for every t � 0

lim inf
n!1 sup

�2Rk
Pn;�(

p
n diam(Cn) � t) � �:



Partially Sparse Estimators (cont�d)

The condition rankA1 < q in Theorem 2 is, e.g., satis�ed if A = Ik or
A = (0; Ik�). It is not satis�ed if A = (Ik�k�; 0). In this case a similar result
can be obtained under an additional condition on the estimator.



Summary

� Con�dence sets based on sparse estimators are necessarily larger then stan-
dard MLE based con�dence sets by an order of magnitude. This results
hold under very weak conditions on the (semi)parametric model. Similar
results hold for partially sparse estimators.

� Sparse estimators also have bad minimax risk properties (Lehmann &
Casella (1998), Yang (2005), Leeb &Pötscher (2008)).

� Hence, despite its appeal at �rst sight, the sparsity property and the closely
related "oracle" property have detrimental consequences for an estimator
and associated con�dence sets. This downside of sparse estimators is not
visible in the pointwise asymptotic framework underlying the "oracle" prop-
erty concept of Fan & Li (2001) and others.


