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Sparse Estimators and the "Oracle" Property

Given is a parametric statistical model indexed by a parameter 6 &€ R, An
estimator Oy, for 0 is said to be sparse if for every 6 € RFandi=1,...,k

lim P, g (@n,z = O) =1 whenever §; = 0.

n—oo

Examples of sparse estimators (that are also consistent for 6):

e Post-model-selection estimators based on a consistent model selection pro-

cedure.

e Thresholding estimators with suitable choice of threshold ¢, (typically

1/2

cn — 0, n*/4cp — 00).



Sparse Estimators and the "Oracle" Property (cont’d)

e Various penalized maximum likelihood (least squares) estimators (e.g.,
SCAD, LASSO, adaptive LASSO, certain Bridge estimators) for an ap-
propriate choice of the regularization parameter.

For many (but not all) estimators, sparsity implies the so-called "oracle" prop-
erty: That is, their (pointwise) asymptotic distribution coincides with the dis-
tribution of an infeasible "estimator" (the "oracle") that makes use of the zero
restrictions holding for the true parameter vector 6. l.e., the estimator "adapts"

to the unknown zero restrictions.



A Simple Example

Y1, Yo iid N(0,1) and B, = V1(|[Y| > cn) with cn — 0 and n1/2c, —
co. This is Hodges' estimator. It is a post-model-selection estimator (hard-
thresholding) based on consistent selection between the unrestricted model
Mp; = R and the restricted model Mp = {0}. Then 0y, is consistent for 0
and satisfies the sparsity property:

nli_)moo P (@n = O) =1  whenever 6 = 0,
as well as the "oracle" (superefficiency) property

n!/2(0, — 0) i{ VOO 020

the "oracle" being the unrestricted MLE @(U) =Y if 0 # 0, and the restricted
MLE §(R) = 0 if # = 0. This seems to say that 0, is as good as the
unrestricted MLE if & # 0 and as good as the restricted MLE if 6 = 0.



A Simple Example (cont’d)

The "oracle" property suggests the following confidence interval for 6

C, — { (@n — n_l/zzl_a/Q, 0,, + fn,_l/zzl_a/z) if ?n #+0 |
{0} if 6,=0
That, is ), chooses between the standard confidence intervals based on the
unrestricted and restricted MLE, respectively, depending on whether the model
selection procedure underlying 6,, chooses the unrestricted model My =R or
the restricted model Mpr = {0}. Due to the "oracle" property, C, satisfies

: 1—« for #0
lim Pn,g(HECn):{ 1 for97:é0

n—oo

}zl—a for every 6 € R.



Comments on the "Oracle" Property

A selection of recent papers establishing the "oracle" property for a variety of

estimators in (semi)parametric models:

Bunea (AS 2004), Bunea & McKeague (JMVA 2005)

Fan & Li (JASA 2001, AS 2002, JASA 2004), Zou (JASA 2006)
Wang & Leng (JASA 2007), Li & Liang (AS 2007)

Wang, G. Li, & Tsai (JRSS B 2007), Zhang & Li (BA 2007)

Wang, R. Li, & Tsai (BA 2007), Zou & Yuan (AS 2008), etc.



Comments on the "Oracle" Property (cont’d)

This literature views the "oracle" property as a desirable property of an esti-
mator as the "oracle" property seems to lead to a gain in efficiency and to a

gain in the size of confidence sets.

Zou & Yuan (AS 2008) call the "oracle" property a "gold standard for evaluating

variable selection and coefficient estimation procedures".



Comments on the "Oracle" Property (cont’d)

However, nothing could be farther from the truth: Bad minimax risk behavior
of Hodges' estimator has been known for decades (e.g., Lehmann & Casella
(1998)). Furthermore, the "confidence" set Cj, constructed above, although
satisfying

. ] 1—a for8+#0

lim Pn’g(QECn)—{ 1 forQ:O}Zl_a for every 6 € R,

n—oo

is dishonest in the sense that its minimal coverage probability satisfies

lim in}"R P,e(0 € Cn)=0

n—00 g

as pointed out by Beran (1992) and Kabaila (1995).

We establish general results of this sort for arbitrary confidence sets based on
arbitrary sparse estimators in general (semi)parametric models.



Comments on the "Oracle" Property (cont’d)

These results complement results on bad minimax risk behavior of sparse esti-
mators in Yang (BA 2005) and Leeb &Pdtscher (JE 2008); earlier minimax risk

results can be found in Hosoya (1984), Shibata (AIM 1986), Foster & George
(AS 1994).



Results

Assume the statistical experiment {Pn,g 0 € ]Rk} satisfies for every v € R¥

P, ~//n is contiguous w.r.t. Py . (1)

Let C), be a random set in RF "based" on the sparse estimator 0, in the sense
that

Pnﬁ(@n € Cp)=1 forevery e R”. (2)

E.g., Cn = [0n — an,On + bp] is a k-dimensional box centered at 8, with
an, by, possessing only nonnegative coordinates.



Results (cont’d)

Theorem 1: Suppose Assumption (1) is satisfied, @n Is sparse, and C', satisfies
(2). Let § denote the asymptotic minimal coverage probability of Cf,, i.e.,

6 = lim inf 9ien1£k P, e(0 € Ch).

Then for every t > 0

liminf sup P, g(v/ndiam(Cy) >t) > 6. (3)
OO gerk

More generally, for every ¢ > 0 and every unit vector e € RE

liminf sup P, g(x/next(Cn,0n,e) > t) > 6 (4)

where ext(Cl,, @n, e) =sup{A >0: de+ 0, € Ch}.



Results (cont’d)

e Any confidence set (), based on a sparse estimator that has positive as-
ymptotic minimal coverage probability is necessarily larger by an order of
magnitude than the classical MLE based confidence set which has diameter
~ n~1/2_(If diam Cy, is nonrandom, then \/ndiam Cy, — 00.)

e Confidence sets C';, based on sparse estimators and constructed from the
"oracle" property, like the interval in the Hodges' estimator example, have
bounded y/ndiam C),. Hence, they have asymptotic minimal coverage
probability 0.



Results (cont’d)

e Extension to semiparametric models {Pn,gﬁ 9 cRF T € T} and to con-

fidence sets for linear functions A@ is simple.

e For particular classes of sparse estimators the results in (3) and (4) can be

strengthened.

e Assumption © = RF not essential. Results hold as long as O is an interior

point of O.



Partially Sparse Estimators

Suppose now 6 = (o', 3’)" where 8 is kg x 1, and the estimator 0, for 0 is
partially sparse in the sense that for every # € RF and i =1, .. ., kg
lim Py (Bn;=0)=1 holds whenever 8; = 0.

n—oo

If C', is a confidence set for 3 based on ﬁ’n Theorem 1 (extended to semipara-
metric models) can be immediately applied to give a similar result. This is not
so if confidence sets for 8 or A6 (with this linear function also depending on

a) are considered.



Partially Sparse Estimators (cont’d)

Theorem 2: Suppose for some o € R5=k5 the sequence Pn,(oz,'y/\/ﬁ) IS
contiguous w.r.t. Pm(a,o) for every v € R¥8. Let 6, be partially sparse. Let
A = (A1, Ap) be a ¢ X k matrix of full row-rank satisfying rank A1 < q.
Suppose Ci, is based on A, (i.e., P,n’g(Aén € Cp) = 1 for every 0). Let o
denote the asymptotic minimal coverage probability of Cp, i.e.,

6 = lim inf gienﬂgk P, e(A0 € Cp).

Then for every t > 0

liminf sup P, g(v/ndiam(Cp) >t) > 6.
n—00 ;
OcRF



Partially Sparse Estimators (cont’d)

The condition rank A1 < q in Theorem 2 is, e.g., satisfied if A = I or
A= (0, [kﬁ)- It is not satisfied if A = (Ik—kﬁa 0). In this case a similar result

can be obtained under an additional condition on the estimator.



Summary

e Confidence sets based on sparse estimators are necessarily larger then stan-
dard MLE based confidence sets by an order of magnitude. This results
hold under very weak conditions on the (semi)parametric model. Similar
results hold for partially sparse estimators.

e Sparse estimators also have bad minimax risk properties (Lehmann &
Casella (1998), Yang (2005), Leeb &P&tscher (2008)).

e Hence, despite its appeal at first sight, the sparsity property and the closely
related "oracle" property have detrimental consequences for an estimator
and associated confidence sets. This downside of sparse estimators is not
visible in the pointwise asymptotic framework underlying the "oracle" prop-
erty concept of Fan & Li (2001) and others.



