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Penalized ML Estimators

Linear regression model y = Xθ + u, consider estimator θ̂ for θ

θ̂ = arg min
θ∈Rk

‖y − Xθ‖2︸ ︷︷ ︸
likelihood(LS)−part

+ λn p(θ)︸ ︷︷ ︸
penalty

λn is a tuning parameter.

Bridge estimators (lp - type penalties, Frank and Friedman,
1993, LASSO for p = 1, Tibshirani, 1996).

Hard- and soft-thresholding estimators.

Smoothly clipped absolute deviation (SCAD) estimator (Fan
and Li, 2001).

Adaptive LASSO estimator (Zou, 2006).

These estimators can be viewed to simultaneously perform model
selection and parameter estimation. (p ≤ 1 for Bridge est.)
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Some terminology

Conservative model selection – Zero coefficients are found
with asymptotic probability less than 1.

Consistent model selection – Zero coefficients are found with
asymptotic probability equal to 1.

Oracle property – Asymptotic distribution coincides with the
one of the unpenalized estimator of the true model.

Consistent vs. conservative model selection is in our context driven
by the asymptotic choice of tuning parameters λn. (“Sparsely” vs.
“non-sparsely” tuned procedures).
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Some literature on distributional properties of PMLEs

Knight and Fu, 2000. Moving-parameter asymptotics for
(non-sparsely tuned) LASSO and Bridge estimators in general.

Fan and Li, 2001. Fixed-parameter asymptotics for SCAD.

Zou, 2006. Fixed-parameter asymptotics for LASSO and
adaptive LASSO.

Pötscher and Leeb, 2007. Finite-sample distribution,
moving-parameter asymptotics for hard-thresholding, LASSO,
and SCAD. Impossibility result for the estimation of the cdf.

Pötscher and Schneider, 2007. Analogous results for the
adaptive LASSO.

Pötscher and Schneider, 2008. Finite-sample and asymptotic
coverage probabilities of confidence sets for hard-thresholing,
LASSO, ad. LASSO.

. . .
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Definition of the adaptive LASSO estimator θ̂AL

Linear regression model y = Xθ + u.

X is n × k, non-stochastic, rk(X ) = k.

u ∼ Nn (0, σ2In)

Adaptive LASSO estimator, Zou, 2006 (random penalty weights)

θ̂AL = arg min
θ∈Rk

‖y − Xθ‖2 + 2nµ2
n

k∑
j=1

|θj |/|θ̂OLS,j |, µn > 0

For the theoretical analysis, assume that σ2 is known and that
X ′X is diagonal, in particular X ′X = nIk .

Remove these assumptions for simulation results concerning
the finite-sample distribution.
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Explicit solution in the simplified model

Wlog consider Gaussian location model y1, . . . , yn ∼ N(θ, 1).
Then θ̂OLS = ȳ and

θ̂AL =

{
0 if |ȳ | ≤ µn

ȳ − µ2
n/ȳ if |ȳ | > µn

ȳ

θ̂AL

µn
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Consistency of θ̂AL

Estimation consistency:

The condition µn → 0 is equivalent to the consistency of θ̂AL.

Then θ̂AL is also is also uniformly consistent for θ, i.e. for all
ε > 0

lim
n→∞

sup
θ∈R

Pn,θ

(∣∣∣θ̂AL − θ
∣∣∣ > ε

)
= 0

Model selection consistency: two possible regimes arise.

1 The case µn → 0 and n1/2µn → m, 0 ≤ m < ∞, corresponds
to conservative model selection (non-sparsely tuned).

2 The case µn → 0 and n1/2µn →∞ corresponds to consistent
model selection (sparsely tuned).
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The finite-sample distribution of θ̂AL

Fn,θ(x) = Pn,θ(n
1/2(θ̂AL − θ) ≤ x) is given by

1(n1/2θ + x ≥ 0) Φ
(
z

(2)
n,θ(x)

)
+ 1(n1/2θ + x < 0) Φ

(
z

(1)
n,θ(x)

)
.

z
(2)
n,θ(x) and z

(1)
n,θ(x) are −(n1/2θ − x)/2±

p
((n1/2θ + x)/2)2 + nµ2

n.

dFn,θ(x) = { Φ(n1/2(−θ + µn)) − Φ(n1/2(−θ − µn)) } dδ−n1/2θ(x) +

0.5× {1(n1/2θ + x > 0) φ
(
z

(2)
n,θ(x)

)
(1 + tn,θ(x)) +

1(n1/2θ + x < 0) φ
(
z

(1)
n,θ(x)

)
(1− tn,θ(x)) } dx

where tn,θ(x) :=
“
((n1/2θ + x)/2)2 + nµ2

n

”−1/2

. Φ and φ the cdf and pdf of

N(0, 1), resp.
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The finite-sample distribution of θ̂AL

n = 40, θ = 0.05, µn = 0.05
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Fixed-parameter asymptotics – both regimes

1 Conservative case. Fn,θ converges weakly to
1(x ≥ 0)Φ

`
x
2

+
p

( x
2
)2 + m2

´
+ 1(x < 0)Φ

`
x
2
−

p
( x

2
)2 + m2

´
θ = 0

Φ(x) θ 6= 0

2 Consistent case. Fn,θ converges weakly to
1(x ≥ 0) θ = 0

Φ(x + ρθ) θ 6= 0 and n1/2µ2
n → ρ

If n1/4µn → 0, Fn,θ(x) → Φ(x) for θ 6= 0 (“oracle property”,
Zou, 2006).
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Fixed-parameter asymptotic – consistent case

n = 1, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 10, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 50, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 100, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 200, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 500, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 1000, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 2000, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 5000, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 104, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 5× 104, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 5× 105, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 106, µn = n−1/3 (consistent case)
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Fixed-parameter asymptotic – consistent case

n = 106, µn = n−1/3 (consistent case)

Is the non-normality of the finite-sample distribution a
transient feature as n →∞?



Introduction Adaptive LASSO Consistency Distributions Other PMLEs Simulations CDF Estimation Conclusion

Fixed-parameter asymptotic – consistent case

n = 106, µn = n−1/3 (consistent case)

Is the non-normality of the finite-sample distribution a
transient feature as n →∞?

Need to look at moving-parameter asymptotics!
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Moving-parameter asymptotics

1 Conservative case.

Let µn → 0 and n1/2µn → m, 0 ≤ m < ∞. Suppose the true
parameter θn ∈ R satisfies n1/2θn → ν ∈ R ∪ {−∞,∞}. Then FA,n,θn

converges weakly to

If ν ∈ R

1(ν + x ≥ 0) Φ
(
−(ν − x)/2 +

√
((ν + x)/2)2 + m2

)
+

1(ν + x < 0) Φ
(
−(ν − x)/2−

√
((ν + x)/2)2 + m2

)
Φ(x) if |ν| = ∞.

Note: Same as finite-sample distribution, except that n1/2θn and
n1/2µn have settled down to their limiting values.
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Moving-parameter asymptotics

1 Consistent case.

Let µn → 0 and n1/2µn → ∞. Suppose the true parameter θn ∈ R
satisfies θn/µn → ζ ∈ R ∪ {−∞,∞} and n1/2θn → ν ∈ R ∪ {−∞,∞}.
Then FA,n,θn converges weakly to

If 0 < |ζ| < ∞: pointmass at −ν

If |ζ| = ∞: Φ(. + ρθ) where n1/2µ2
n → ρ.

For |ν|, |ρ| = ∞, above expressions mean total mass escaping to
±∞. Depending on ζ and ν, three possible (weak) limits arise.

Distribution collapses at a point.

Total mass escapes to ±∞.

Limit distribution is normal.

Non-normality persists!!
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Moving-parameter asymptotics – consistent case

n = 1, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 10, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 50, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 100, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 200, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 500, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 1000, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 2000, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 5000, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 104, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Moving-parameter asymptotics – consistent case

n = 5× 104, ζ = 0, ν = 2 (µn = n−1/3, θn = 2n−1/2)
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Uniform consistency with rate an

For which rate an is n1/2(θ̂AL − θ) uniformly an-consistent, i.e.

lim
M→∞

sup
n∈N

sup
θ∈R

Pn,θ

(
an

∣∣∣θ̂AL − θ
∣∣∣ > M

)
= 0 ??

1 Conservative case. Rate an is O(n1/2) (see prev. theorem).

2 Consistent case. Rate an is only O(µ−1
n ).

(In a moving-parameter framework, the asymptotic distribution of

µ−1
n (θ̂AL − θ) collapses to pointmass.)
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Other PMLEs

Results are similar for hard-thresholding, soft-thresholding
(LASSO), and SCAD estimator. (Pötscher and Leeb, 2007).

Identical consistency results.

Analogous asymptotic results.
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Confidence sets based on PMLEs

Based on Pötscher and Schneider, 2008.

Let Cn = [θ̂ − an, θ̂ + an] be a confidence set for θ with infimal
coverage probability of at least δ, ie inf

θ∈R
Pn,θ(θ ∈ Cn) ≥ δ.

For each n ∈ N, we have

an,H > an,L > an,A > an,MLE for a given δ > 0

Asymptotically, the following holds.

1 Conservative case. All quantities are of the same order n−1/2.

2 Consistent case. an,H , an,L, and an,A are one order of

magnitude larger than an,MLE.
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Confidence sets based on PMLEs

Plot of n1/2an against n1/2µn for δ = 0.95.
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Simulations - remove orthogonality assumption

k = 4, n = 200, θ = (3, 1.5, 0, 0)′ + 2/n1/2(0, 0, 1, 1)′, X ′X = nΩ with

Ωij = 0.5|i−j|, 1000 simulations

µn = n−1/3

θ1
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Simulations - remove orthogonality assumption

k = 4, n = 200, θ = (3, 1.5, 0, 0)′ + 2/n1/2(0, 0, 1, 1)′, X ′X = nΩ with

Ωij = 0.5|i−j|, 1000 simulations

µn = n−1/3

θ2
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Simulations - remove orthogonality assumption

k = 4, n = 200, θ = (3, 1.5, 0, 0)′ + 2/n1/2(0, 0, 1, 1)′, X ′X = nΩ with

Ωij = 0.5|i−j|, 1000 simulations

µn = n−1/3

θ3
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Simulations - remove orthogonality assumption

k = 4, n = 200, θ = (3, 1.5, 0, 0)′ + 2/n1/2(0, 0, 1, 1)′, X ′X = nΩ with

Ωij = 0.5|i−j|, 1000 simulations

µn = n−1/3

θ4
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Simulations - remove orthogonality assumption

k = 4, n = 200, θ = (3, 1.5, 0, 0)′ + 2/n1/2(0, 0, 1, 1)′, X ′X = nΩ with

Ωij = 0.5|i−j|, 1000 simulations

Choose µn through cross-validation.

θ1
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Simulations - remove orthogonality assumption

k = 4, n = 200, θ = (3, 1.5, 0, 0)′ + 2/n1/2(0, 0, 1, 1)′, X ′X = nΩ with

Ωij = 0.5|i−j|, 1000 simulations

Choose µn through cross-validation.

θ2
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Simulations - remove orthogonality assumption

k = 4, n = 200, θ = (3, 1.5, 0, 0)′ + 2/n1/2(0, 0, 1, 1)′, X ′X = nΩ with

Ωij = 0.5|i−j|, 1000 simulations

Choose µn through cross-validation.

θ3
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Simulations - remove orthogonality assumption

k = 4, n = 200, θ = (3, 1.5, 0, 0)′ + 2/n1/2(0, 0, 1, 1)′, X ′X = nΩ with

Ωij = 0.5|i−j|, 1000 simulations

Choose µn through cross-validation.

θ4
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An impossibility result on the estimation of the cdf

Results rest on Leeb and Pötscher, 2006.

Let µn → 0 and n1/2µn → m with 0 ≤ m ≤ ∞. Then every consistent
estimator F̂n(t) of Fn,θ(t) satisfies

lim
n→∞

sup
|θ|<c/n1/2

Pn,θ

(∣∣∣F̂n(t)− Fn,θ(t)
∣∣∣ > ε

)
= 1

for each ε < (Φ(t + m)− Φ(t −m))/2 and each c > 1.

In particular no uniformly consistent estimator for Fn,θ(t) exists.
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An impossibility result on the estimation of the cdf

Results rest on Leeb and Pötscher, 2006.

Let µn → 0 and n1/2µn → m with 0 ≤ m ≤ ∞. Then every
estimator F̂n(t) of Fn,θ(t) satisfies

sup
|θ|<c/n1/2

Pn,θ

(∣∣∣F̂n(t)− Fn,θ(t)
∣∣∣ > ε

)
≥ 1

2

for each ε < (Φ(t + n1/2µn)−Φ(t − n1/2µn))/2, for each c > |t|, and
for each fixed sample size n.

This is a finite-sample result for each estimator of Fn,θ(t).
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Conclusions

The finite-sample distribution of the adaptive LASSO
estimator and other PMLEs are highly non-normal.

Non-normality persists in large samples. This can be seen
through a “moving-parameter” asymptotic framework.

Fixed-parameter asymptotics (as underlying the oracle-proper-
ty) paint a misleading picture of the performance of the
estimator due to the non-uniformity of these results. Relying
on fixed-parameter asymptotics in this context is dangerous.

Confidence intervals in the consistent case are larger by one
order of magnitude compared to unpenalized estimator.

Sparsity at all costs?
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